Skip to main content
Log in

Effect of Cooling Rate on Microstructure, Microporosity, and Segregation Behavior of Co-Al-W Alloys Prepared by Vacuum Induction Melting

  • High Temperature Alloys: Manufacturing, Processing, and Repair
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The work focuses on the investigation of technological properties of new γ′-type strengthened Co-based superalloys, including cooling rate effects on the as-cast microstructure and microsegregation of polycrystalline Co-Al-W-based superalloys. To vary the cooling rate, alloys prepared via vacuum induction melting (VIM) were cast to different types of casting molds. The crystallization time of the alloys was determined via direct temperature measurement of the solidifying metal. Microstructural parameters such as porosity and secondary dendrite arm spacing (SDAS) were evaluated using image analysis. The influence of cooling rate on the microsegregation of the alloying elements was also determined. The average volume fraction of pore shrinkage was the lowest for the fast-solidified alloy. The cooling rate did not affect gas porosity, whereas decreasing the cooling rate increased SDAS, similarly to that of commercial Ni-based superalloys. A reduced solidification speed did not cause the formation of unexpected phases but resulted in increased macro- and microsegregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Chen, N.L. Okamoto, K. Chikugo, and H. Inui, J. Alloy. Compd. 858, 157724. https://doi.org/10.1016/j.jallcom.2020.157724 (2021).

    Article  Google Scholar 

  2. H.Y. Yan, V.A. Vorontsov, and D. Dye, Intermetallics. https://doi.org/10.1016/j.intermet.2013.10.022 (2014).

    Article  Google Scholar 

  3. G. Feng, H. Li, S.S. Li, and J.B. Sha, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2012.06.013 (2012).

    Article  Google Scholar 

  4. A.M.S. Costa, J.P. Oliveira, M.V. Salgado, C.A. Nunes, E.S.N. Lopes, N.V.V. Mogili, A.J. Ramirez, and A.P. Tschiptschin, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2018.05.078 (2018).

    Article  Google Scholar 

  5. M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, and H. Inui, Effects of quaternary alloying elements on the γ′ solvus temperature of Co–Al–W based alloys with fcc/L12 two-phase microstructures. J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2010.08.050 (2010).

    Article  Google Scholar 

  6. W.W. Xu, J.J. Han, Y. Wang, C.P. Wang, X.J. Liu, and Z.K. Liu, Acta Mater. https://doi.org/10.1016/j.actamat.2013.05.032 (2013).

    Article  Google Scholar 

  7. M. Chen, and C.-Y. Wang, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2008.12.040 (2008).

    Article  Google Scholar 

  8. Z.W. Jun, and X.Y. Tao, Adv. Mat. Res. https://doi.org/10.4028/www.scientific.net/AMR.718-720.10 (2014).

    Article  Google Scholar 

  9. E. T. McDevitt, Vacuum induction melting and vacuum arc remelting of Co–Al–W-X gamma-prime superalloys. Paper presented at the 2nd European Symposium on Superalloys and their Applications (EUROSUPERALLOYS 2014), Giens, France, 12–16 May 2014.

  10. B. Nithin, A. Samantha, S.K. Makineni, T. Alam, P. Pandey, A.K. Singh, R. Banerjee, and K. Chattopadhyay, J. Mater. Sci. https://doi.org/10.1007/s10853-016-0026-1 (2017).

    Article  Google Scholar 

  11. S.A. Sani, H. Arabi, S. Kheirandish, and G. Ebrahimi, Int. J. Min. Met. Mater. https://doi.org/10.1007/s12613-019-1727-7 (2019).

    Article  Google Scholar 

  12. A. Epishin, N. Petrushin, G. Nolze, G. Gersteinm, and H.J. Maier, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-018-4756-3 (2018).

    Article  Google Scholar 

  13. X. Zhong, and F. Han, J. Mater. Res. https://doi.org/10.1557/jmr.2019.414 (2020).

    Article  Google Scholar 

  14. X. Zhou, H. Fu, Y. Zhang, X. Huan, and J. Xie, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.07.218 (2018).

    Article  Google Scholar 

  15. X. Zhou, H. Fu, Y. Zhang, X. Huan, and J. Xie, Adv. Eng. Mater. https://doi.org/10.1002/adem.201900641 (2019).

    Article  Google Scholar 

  16. X.F. Ding, T. Mi, F. Xue, H.J. Zhou, and M.L. Wang, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2014.02.068 (2014).

    Article  Google Scholar 

  17. M. Tsunekane, A. Suzuki, and T.M. Pollock, Intermetallics. https://doi.org/10.1016/j.intermet.2010.12.018 (2011).

    Article  Google Scholar 

  18. X. Li, Y. Zhao, F. Xue, X. Yang, Y. Chen, C. Wang, Q. Deng, A. Li, and Q. Feng, Corros. Sci. https://doi.org/10.1016/j.corsci.2020.108725 (2020).

    Article  Google Scholar 

  19. M. Cartón-Cordero, B. Srinivsarao, M. Campos, A. García-Junceda, and J.M. Torralba, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.03.077 (2016).

    Article  Google Scholar 

  20. M. Carton-Cordero, M. Campos, L.P. Freund, M. Kolb, S. Neumeier, M. Goeken, and J.M. Torralba, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2018.08.007 (2018).

    Article  Google Scholar 

  21. R. Casas, F. Gálvez, and M. Campos, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2018.04.004 (2018).

    Article  Google Scholar 

  22. C.-L. Chen and Suprianto, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.03.262. (2019)

  23. S.P. Murray, K.M. Pusch, A.T. Polonsky, C.J. Torbet, G.G.E. Seward, N. Zhou, S.A.J. Forsik, P. Nandwana, M.M. Kirka, R.R. Dehoff, W.E. Slye, and T.M. Pollock, Nat. Commun. https://doi.org/10.1038/s41467-020-18775-0 (2020).

    Article  Google Scholar 

  24. D. Migas, P. Gradoń, T. Mikuszewski, and G. Moskal, J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-020-10279-9 (2020).

    Article  Google Scholar 

  25. F. Xue, Z. Li, and Q. Feng, Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/MSF.654-656.420 (2010).

    Article  Google Scholar 

  26. J. Koßmann, C.H. Zenk, I. Lopez-Galilea, S. Neumeier, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz, and T. Hammerschmidt, J. Mater. Sci. https://doi.org/10.1007/s10853-015-9177-8 (2015).

    Article  Google Scholar 

  27. A. Tomaszewska, T. Mikuszewski, G. Moskal, and D. Migas, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.03.397 (2018).

    Article  Google Scholar 

  28. I. Lopez-Galilea, C. Zenk, S. Neumeier, S. Huth, W. Theisen, and M. Göken, Adv. Eng. Mater. https://doi.org/10.1002/adem.201400249 (2015).

    Article  Google Scholar 

  29. C.H. Zenk, N. Volz, C. Zenk, P.J. Felfer, and S. Neumeier, Curr. Comput.-Aided Drug Des. https://doi.org/10.3390/cryst10111058 (2020).

    Article  Google Scholar 

  30. F. Xue, M. Wang, Q. Feng, Alloying effects on heat‐treated microstructure in Co‐Al‐W‐base superalloys at 1300°C and 900°C, ed. E. S. Huron, R. C. Reed, M. C. Hardy, M. J. Mills, R. E. Montero, P. D. Portella, J. Telesman (The Minerals, Metals, & Materials Society, 2012), p. 813.

  31. B. Wu, L. Li, J. Wu, Z. Wang, Y. Wang, X. Chen, J. Dong, and J. Li, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-014-1017-3 (2014).

    Article  Google Scholar 

  32. M. Kolb, L.P. Freund, F. Fischer, I. Povstugar, S.K. Makineni, B. Gault, D. Raabe, J. Müller, E. Spiecker, S. Neumeier, and M. Göken, Acta Mater. https://doi.org/10.1016/j.actamat.2017.12.020 (2018).

    Article  Google Scholar 

  33. L. Wang, L. Song, A. Stark, Y. Liu, M. Oehring, U. Lorenz, and F. Pyczak, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.07.121 (2019).

    Article  Google Scholar 

  34. J. Szala, Application of computer-aided image analysis methods for a quantitative evaluation of material structure (Silesian University of Technology, Gliwice, Poland, 2001) (in Polish).

    Google Scholar 

  35. S. Roskosz, Pract. Metallogr. https://doi.org/10.3139/147.110214 (2013).

    Article  Google Scholar 

  36. T. Link, S. Zabler, A. Epishin, A. Haibel, M. Bansal, and X. Thibault, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2006.03.005 (2006).

    Article  Google Scholar 

  37. S. Roskosz, and J. Adamiec, Mater. Charact. https://doi.org/10.1016/j.matchar.2009.01.024 (2009).

    Article  Google Scholar 

  38. P. Caron, C. Ramusat, Optimization of the homogenization and hot isostatic pressing heat treatments of a fourth generation single crystal superalloy. Paper presented at the 2nd European Symposium on Superalloys and their Applications (EUROSUPERALLOYS 2014), Giens, France, 12–16 May 2014.

  39. Q. Yue, L. Liu, W. Yang, T. Huang, J. Zhang, H. Fu, and X. Zhao, Progr. Nat. Sci.: Mater. Int. https://doi.org/10.1016/j.pnsc.2017.02.008 (2017).

    Article  Google Scholar 

  40. T. Wittenzellner, S. Sumarli, H. Schaar, F. Wang, D. Ma, and A. Bührig-Polaczek, Materials. https://doi.org/10.3390/ma13194265 (2020).

    Article  Google Scholar 

  41. M. Kang, J. Wang, H. Gao, Y. Han, G. Wang, and S. He, Materials. https://doi.org/10.3390/ma10030250 (2017).

    Article  Google Scholar 

  42. H.S. Whitesell, and R.A. Overfelt, Mater. Sci. Eng. A. https://doi.org/10.1016/S0921-5093(01)01264-3 (2001).

    Article  Google Scholar 

  43. J. Zhang, J.G. Li, T. Jin, X.F. Sun, and Z.Q. Hu, Adv. Mat. Res. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1016 (2010).

    Article  Google Scholar 

  44. G.K. Sigworth, and C. Wang, Metall. Mater. Trans. B. https://doi.org/10.1007/BF02659138 (1993).

    Article  Google Scholar 

  45. W. Kurz and D. J. Fischer, Solidification Microstructure: Cells and Dendrites, ed. W. Kurz and D. J. Fisher (Trans Tech Publications Ltd, Netherlands, 1992), p. 63.

  46. H.S. Whitesell, L. Li, and R.A. Overfelt, Metall. Mater. Trans. B. https://doi.org/10.1007/s11663-000-0162-4 (2000).

    Article  Google Scholar 

  47. B. Gao, Y. Sui, H. Wang, C. Zou, Z. Wei, R. Wang, and Y. Sun, Materials. https://doi.org/10.3390/ma12121920 (2019).

    Article  Google Scholar 

  48. G. Matache, D.M. Stefanescu, C. Puscasu, and E. Alexandrescu, Int. J. Cast Met. Res. https://doi.org/10.1080/13640461.2016.1166726 (2016).

    Article  Google Scholar 

  49. M. Ramsperger, R.F. Singer, and C. Körner, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-015-3300-y (2016).

    Article  Google Scholar 

  50. Y. Hao, G. Cao, C. Li, W. Liu, J. Zi, Z. Liu, and F. Gao, ISIJ Int. https://doi.org/10.2355/isijinternational.ISIJINT-2018-193 (2018).

    Article  Google Scholar 

  51. T.O. Webb, D.C. van Aken, S.N. Lekakh, Evaluating Chemical Homogeneity in the Performance of Eglin Steel. Paper presented at the 118th Metalcasting Congress, Schaumburg, USA, 8-11 April 2014.

  52. R. Frisk, R. Andersson, and N.Å.I. Rogberg, Metals. https://doi.org/10.3390/met9060711 (2019).

    Article  Google Scholar 

  53. Y.M. Won, and B.G. Thomas, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-001-0152-4 (2001).

    Article  Google Scholar 

  54. M.I. Khan, A.O. Mostafa, M. Aljarrah, E. Essadiqi, and M. Medraj, J. Mater. https://doi.org/10.1155/2014/657647 (2014).

    Article  Google Scholar 

  55. M.C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974).

    Book  Google Scholar 

  56. R.M. Kearsey, J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, P. Au, The Effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems, ed. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra and S. Walston (The Minerals, Metals & Materials Society, 2004).

  57. C. Yang, L. Liu, X. Zhao, Y. Li, J. Zhang, and H. Fu, Progr. Nat. Sci.: Mater. Int. https://doi.org/10.1016/j.pnsc.2012.10.001 (2012).

    Article  Google Scholar 

  58. X. Shi, S.C. Duan, W.S. Yang, H.J. Guo, and J. Guo, Metall. Mater. Trans. B. https://doi.org/10.1007/s11663-018-1169-z (2018).

    Article  Google Scholar 

  59. L. Xinxu, J. Chonglin, Z. Yong, L. Shaomin, and J. Zhouhua, Vacuum. https://doi.org/10.1016/j.vacuum.2020.109379 (2020).

    Article  Google Scholar 

  60. X. Yan, Q. Xu, Q. Liu, G. Tian, Z. Wen, and B. Liu, Mater. Lett. https://doi.org/10.1016/j.matlet.2020.129213 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financed from the budgetary funds for science for the years 2018–2022 as a research project within the Diamond Grant program (0069/DIA/2018/47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Migas.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migas, D., Roskosz, S., Moskal, G. et al. Effect of Cooling Rate on Microstructure, Microporosity, and Segregation Behavior of Co-Al-W Alloys Prepared by Vacuum Induction Melting. JOM 74, 2951–2963 (2022). https://doi.org/10.1007/s11837-022-05260-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05260-w

Navigation