Skip to main content

Advertisement

Log in

Indirect Carbonation by a Two-Step Leaching Process Using Ammonium Chloride and Acetic Acid

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Indirect carbonation as an efficient CO2 sequestration strategy has received extensive attention in recent years. This study proposes a two-step leaching indirect carbonation process using NH4Cl and CH3COOH in order to combine the advantages of the two leaching agents to obtain a better experimental outcome. The experimental results show that NH4Cl has a high pH buffering capacity, which can increase the pH of the mixed leachate to an alkaline level. Among the 21 groups of mixed leachate, 17 were alkaline (pH > 7). The mixed leachate has a high Ca2+ ions carbonation rate under low CH3COOH concentration conditions, and the carbonation rate of steel slag with a particle size of < 38 μm can reach 60% when the CH3COOH concentration is 0.1 M. SEM imaging showed that the CaCO3 formed by the reaction exists in a hexagonal calcite crystal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. CO2. Earth. “Trends in Atmospheric Carbon Dioxide”(CO2. Earth. 2007), https://www.CO2.earth/. Accessed 2 Sept 2021.

  2. M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, and N. Mac Dowell, Energy Environ. Sci. 7, 130 (2014).

    Article  Google Scholar 

  3. N. Macdowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, and G. Jackson, Energy Environ. Sci. 3, 129 (2010).

    Article  Google Scholar 

  4. M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, and S. Brown, Energy Environ. Sci. 11, 1062 (2018).

    Article  Google Scholar 

  5. K.S. Lackner, Science 300, 1677 (2003).

    Article  Google Scholar 

  6. Y.B. Luo, and D.F. He, Environ. Sci. Pollut. Res. 7, 947 (2021).

    Google Scholar 

  7. Y.B. Luo, and D.F. He, J. Sust. Metall. 28, 49383 (2021).

    Google Scholar 

  8. A. Azdarpour, M. Asadullah, and E. Mohammadian, Chem. Eng. J. 279, 615 (2015).

    Article  Google Scholar 

  9. W.J.J. Huijgen, G.J. Witkamp, and R.N.J. Comans, Environ. Sci. Technol. 39, 9676 (2005).

    Article  Google Scholar 

  10. A. Said, H.P. Mattila, and M. Järvinen, Appl. Energy. 112, 765 (2013).

    Article  Google Scholar 

  11. R. Zevenhoven, D. Legendre, and A. Said, Energy 175, 1121 (2019).

    Article  Google Scholar 

  12. S. Yadav, and A. Mehra, Waste Manag. 64, 348 (2017).

    Article  Google Scholar 

  13. S.H. Kim, S. Jeong, and H. Chung, Waste Manag. 103, 122 (2020).

    Article  Google Scholar 

  14. M. Salimi, and A. Ghorbani, Appl. Clay Sci. 184, 105390 (2020).

    Article  Google Scholar 

  15. P. Suer, J.E. Lindqvist, and M. Arm, Sci. Total Environ. 407, 5110 (2009).

    Article  Google Scholar 

  16. C. Barca, C. Gérente, and D. Meyer, Water Res. 46, 2376 (2012).

    Article  Google Scholar 

  17. Y.T. Yuen, P.N. Sharratt, and B. Jie, Environ. Sci. Pollut. Res. 23, 22309 (2016).

    Article  Google Scholar 

  18. S. Teir, S. Eloneva, and C.J. Fogelholm, Energy 32, 528 (2007).

    Article  Google Scholar 

  19. S. Eloneva, S. Teir, and J. Salminen, Energy 33, 1461 (2008).

    Article  Google Scholar 

  20. M. Bilen, M. Altiner, and M. Yildirim, Part. Sci. Technol. 36, 368 (2018).

    Article  Google Scholar 

  21. S. Eloneva, S. Teir, and S. Eloneva, Ind. Eng. Chem. Res. 47, 7104 (2008).

    Article  Google Scholar 

  22. W.J. Hung, K.I. Lai, and Y.W. Chen, Ind. Eng. Chem. Res. 45, 1722 (2006).

    Article  Google Scholar 

  23. D. Dionysiou, M. Tsianou, and G. Botsaris, Ind. Eng. Chem. Res. 39, 4192 (2000).

    Article  Google Scholar 

  24. W. Bao, H. Li, and Y. Zhang, Ind. Eng. Chem. Res. 49, 2055 (2010).

    Article  Google Scholar 

  25. S. Kodama, T. Nishimoto, and N. Yamamoto, Energy 33, 776 (2008).

    Article  Google Scholar 

  26. Y. Sun, M.S. Yao, and J.P. Zhang, Chem. Eng. J. 173, 437 (2011).

    Article  Google Scholar 

  27. S. Eloneva, S. Teir, and H. Revitzer, Steel Res. Int. 80, 415 (2009).

    Google Scholar 

  28. M. Owais, M. Jarvinen, and P. Taskinen, J. CO2 Util. 31, 1 (2019).

  29. S.M. Lee, S.H. Lee, and S.K. Jeong, J. Ind. Eng. Chem. 53, 233 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51534001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., He, D. Indirect Carbonation by a Two-Step Leaching Process Using Ammonium Chloride and Acetic Acid. JOM 74, 1958–1968 (2022). https://doi.org/10.1007/s11837-022-05217-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05217-z

Navigation