Skip to main content
Log in

Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters

  • Environmental Degradation of Additively Manufactured Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) has many advantages over conventional manufacturing methods, such as the ability to produce free-form complex shapes and materials with unique properties. Nevertheless, the implementation of AM components into corrosive environments is ultimately limited by the poor corrosion performance of the printed materials when compared to their conventionally manufactured counterparts. In this study, we demonstrate improvement and tailoring of corrosion resistance in AM parts via precise control of laser processing parameters, which were adjusted to optimize pitting corrosion performance for fully dense parts of austenitic stainless steel 316L. Laser power, speed, and hatch spacing were systematically varied while maintaining a constant energy density in a laser powder bed fusion (L-PBF) AM system. Powders were consolidated via selective laser melting (SLM) to establish the parameters influencing pitting performance through potentiostatic anodic oxidation. The results show a strong correlation between processing parameters and resistance to pitting corrosion, attributed to laser velocity-induced variations in microstructure and residual stress state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Kocovic, 3D Printing and Its Impact on the Production of Fully Functional Components: Emerging Research and Opportunities: Emerging Research and Opportunities (IGI Global, Hershey, 2017).

    Book  Google Scholar 

  2. G. Sander, J. Tan, P. Balan, O. Gharbi, D. Feenstra, L. Singer, S. Thomas, R. Kelly, J.R. Scully, and N. Birbilis, Corrosion 74, 1318–1350. (2018).

    Article  Google Scholar 

  3. X. Ni, D. Kong, W. Wu, L. Zhang, C. Dong, B. He, L. Lu, K. Wu, and D. Zhu, J. Mater. Eng. Perform. 27, 3667–3677. (2018).

    Article  Google Scholar 

  4. M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, and M.Y. Tan, Corros. Sci. 161, 108189. (2019).

    Article  Google Scholar 

  5. A. Hemmasian Ettefagh, S. Guo, and J. Raush, Addit. Manuf. 37, 101689. https://doi.org/10.1016/j.addma.2020.101689 (2021).

    Article  Google Scholar 

  6. J.R. Trelewicz, G.P. Halada, O.K. Donaldson, and G. Manogharan, JOM 68, 850–859. (2016).

    Article  Google Scholar 

  7. D.J. Sprouster, W. Streit Cunningham, G.P. Halada, H. Yan, A. Pattammattel, X. Huang, D. Olds, M. Tilton, Y.S. Chu, E. Dooryhee, G.P. Manogharan, and J.R. Trelewicz, Addit. Manuf. 47, 102263. https://doi.org/10.1016/j.addma.2021.102263 (2021).

    Article  Google Scholar 

  8. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater. 117, 371–392. https://doi.org/10.1016/j.actamat.2016.07.019 (2016).

    Article  Google Scholar 

  9. E.T. Akinlabi, R.M. Mahamood, and S.A. Akinlabi, Advanced Manufacturing Techniques Using Laser Material Processing (IGI Global, Pennsylvania, 2016).

    Book  Google Scholar 

  10. D. Pham, and S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling (Springer, Berlin, 2012).

    Google Scholar 

  11. P.K. Gokuldoss, S. Kolla, and J. Eckert, Materials 10, 672. (2017).

    Article  Google Scholar 

  12. W.J. Sames, F. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315–360. (2016).

    Article  Google Scholar 

  13. V. Shapovalov, MRS Bull. 19, 24–28. (1994).

    Article  Google Scholar 

  14. K. Prashanth, S. Scudino, T. Maity, J. Das, and J. Eckert, Mater. Res. Lett. 5, 386–390. (2017).

    Article  Google Scholar 

  15. M. Guo, D. Gu, L. Xi, H. Zhang, J. Zhang, J. Yang, and R. Wang, Int. J. Refract. Metals Hard Mater. 84, 105025. https://doi.org/10.1016/j.ijrmhm.2019.105025 (2019).

    Article  Google Scholar 

  16. M. Ghayoor, K. Lee, Y. He, C.-H. Chang, B.K. Paul, and S. Pasebani, Addit. Manuf. 32, 101011. https://doi.org/10.1016/j.addma.2019.101011 (2020).

    Article  Google Scholar 

  17. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai, Mater. Sci. Eng. A 735, 182–190. https://doi.org/10.1016/j.msea.2018.08.037 (2018).

    Article  Google Scholar 

  18. T. Montalbano, B. Briggs, J. Waterman, S. Nimer, C. Peitsch, J. Sopcisak, D. Trigg and S. Storck, J. Mater. Process. Technol. (in review) (2020).

  19. D. Clymer, J. Cagan, and D. Beuth, J. Mech. Design. https://doi.org/10.1115/1.4037302 (2017).

    Article  Google Scholar 

  20. J.V. Gordon, S.P. Narra, R.W. Cunningham, H. Liu, H. Chen, R.M. Suter, J.L. Beuth, and A.D. Rollett, Addit. Manuf. 36, 101552. https://doi.org/10.1016/j.addma.2020.101552 (2020).

    Article  Google Scholar 

  21. A.J. Sedriks, Corrosion of Stainless Steels. 2nd Edn, (Wiley-Interscience, New York, 1996).

  22. L. Vitos, P.A. Korzhavyi, and B. Johansson, Phys. Rev. Lett. 88, 155501. (2002).

    Article  Google Scholar 

  23. M. Sumita, T. Hanawa, and S. Teoh, Mater. Sci. Eng. C 24, 753–760. (2004).

    Article  Google Scholar 

  24. M.F. McGuire, Stainless Steels for Design Engineers (ASM International, Russell Township, 2008).

    Book  Google Scholar 

  25. J.R. Davis, Stainless Steels (ASM International, Russell Township, 1994).

    Google Scholar 

  26. A. Al-Amr, Mechanical behavior and structure of passive films on austenitic stainless steels (2005).

  27. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Corros. Sci. 50, 1796–1806. https://doi.org/10.1016/j.corsci.2008.04.005 (2008).

    Article  Google Scholar 

  28. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, J. Mater. Process. Technol. 249, 255–263. (2017).

    Article  Google Scholar 

  29. J. Suryawanshi, K. Prashanth, and U. Ramamurty, Mater. Sci. Eng. A 696, 113–121. (2017).

    Article  Google Scholar 

  30. A. Deev, P. Kuznetcov, and S. Petrov, Phys. Procedia 83, 789–796. (2016).

    Article  Google Scholar 

  31. M.L. Montero-Sistiaga, M. Godino-Martinez, K. Boschmans, J.-P. Kruth, J. Van Humbeeck, and K. Vanmeensel, Addit. Manuf. 23, 402–410. (2018).

    Google Scholar 

  32. T. Larimian, M. Kannan, D. Grzesiak, B. AlMangour, and T. Borkar, Mater. Sci. Eng. A 770, 138455. (2020).

    Article  Google Scholar 

  33. Z. Wang, T.A. Palmer, and A.M. Beese, Acta Mater. 110, 226–235. (2016).

    Article  Google Scholar 

  34. P. Zhang, and Z. Liu, Mater. Des. 100, 254–262. (2016).

    Article  Google Scholar 

  35. T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi, Mater. Des. 81, 44–53. (2015).

    Article  Google Scholar 

  36. A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A 644, 171–183. (2015).

    Article  Google Scholar 

  37. K. Saeidi, X. Gao, F. Lofaj, L. Kvetková, and Z.J. Shen, J. Alloys Compd. 633, 463–469. (2015).

    Article  Google Scholar 

  38. K. Saeidi, X. Gao, Y. Zhong, and Z.J. Shen, Mater. Sci. Eng. A 625, 221–229. (2015).

    Article  Google Scholar 

  39. Z. Sun, X. Tan, S.B. Tor, and W.Y. Yeong, Mater. Des. 104, 197–204. (2016).

    Article  Google Scholar 

  40. Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, and D. Fabijanic, Scr. Mater. 141, 94–98. (2017).

    Article  Google Scholar 

  41. D. Macatangay, S. Thomas, N. Birbilis, and R. Kelly, Corrosion 74, 153–157. (2018).

    Article  Google Scholar 

  42. D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, and X. Li, Mater. Des. 152, 88–101. (2018).

    Article  Google Scholar 

  43. G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, and C. Hutchinson, J. Electrochem. Soc. 164, C250–C257. (2017).

    Article  Google Scholar 

  44. Y. Sun, A. Moroz, and K. Alrbaey, J. Mater. Eng. Perform. 23, 518–526. (2014).

    Article  Google Scholar 

  45. K. Geenen, A. Röttger, and W. Theisen, Mater. Corros. 68, 764–775. (2017).

    Article  Google Scholar 

  46. C. Man, Z. Duan, Z. Cui, C. Dong, D. Kong, T. Liu, S. Chen, and X. Wang, Mater. Lett. 243, 157–160. https://doi.org/10.1016/j.matlet.2019.02.047 (2019).

    Article  Google Scholar 

  47. Z. Duan, C. Man, C. Dong, Z. Cui, D. Kong and X. Wang, Corros. Sci. 108520 (2020).

  48. C. Man, C. Dong, T. Liu, D. Kong, D. Wang, and X. Li, Appl. Surf. Sci. 467, 193–205. (2019).

    Article  Google Scholar 

  49. A.B. Kale, B.-K. Kim, D.-I. Kim, E. Castle, M. Reece, and S.-H. Choi, Mater. Character. 163, 110204. (2020).

    Article  Google Scholar 

  50. D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man, and X. Li, Appl. Surf. Sci. 504, 144495. (2020).

    Article  Google Scholar 

  51. M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, and D.S. McPhail, Nature 415, 770–774. (2002).

    Article  Google Scholar 

  52. D.E. Williams, M.R. Kilburn, J. Cliff, and G.I. Waterhouse, Corros. Sci. 52, 3702–3716. (2010).

    Article  Google Scholar 

  53. M. Baker, and J. Castle, Corros. Sci. 34, 667–682. (1993).

    Article  Google Scholar 

  54. T.S.L. Wijesinghe, and D.J. Blackwood, Corros. Sci. 49, 1755–1764. (2007).

    Article  Google Scholar 

  55. J. Jun, K. Holguin, and G. Frankel, Corrosion 70, 146–155. (2014).

    Article  Google Scholar 

  56. Q. Meng, G. Frankel, H. Colijn, and S. Goss, Nature 424, 389–390. (2003).

    Article  Google Scholar 

  57. R. Lillard, M. Kashfipour, and W. Niu, J. Electrochem. Soc. 163, C440–C451. (2016).

    Article  Google Scholar 

  58. R.F. Schaller, A. Mishra, J.M. Rodelas, J.M. Taylor, and E.J. Schindelholz, J. Electrochem. Soc. 165, C234. (2018).

    Article  Google Scholar 

  59. H. Villarraga-Gómez, C.M. Peitsch, A. Ramsey and S.T. Smith, In 2018 ASPE and euspen Summer Topical Meeting: Advancing Precision in Additive Manufacturing, (Lawrence Berkeley National Laboratory Berkeley, California: 2018, pp 201–209.

  60. D.J. Sprouster, J. Sinsheimer, E. Dooryhee, S.K. Ghose, P. Wells, T. Stan, N. Almirall, G.R. Odette, and L.E. Ecker, Scr. Mater. 113, 18–22. https://doi.org/10.1016/j.scriptamat.2015.10.019 (2016).

    Article  Google Scholar 

  61. A.B. Spierings, M. Schneider and R. Eggenberger, Rapid Prototyping J. (2011).

  62. J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit, J. Res. Nat. Inst. Stand. Technol. 119, 494. (2014).

    Article  Google Scholar 

  63. B. Cai, Y. Liu, X. Tian, F. Wang, H. Li, and R. Ji, Corros. Sci. 52, 3235–3242. https://doi.org/10.1016/j.corsci.2010.05.040 (2010).

    Article  Google Scholar 

  64. B.S. Kargar, M.H. Moayed, A. Babakhani, and A. Davoodi, Corros. Sci. 53, 135–146. https://doi.org/10.1016/j.corsci.2010.09.004 (2011).

    Article  Google Scholar 

  65. Y. Hwa, C.S. Kumai, N. Yang, J.K. Yee, and T.M. Devine, Corrosion 77, 1014–1024. https://doi.org/10.5006/3779 (2021).

    Article  Google Scholar 

  66. Y. Cui, and C.D. Lundin, Mater. Design 28, 324–328. https://doi.org/10.1016/j.matdes.2005.05.022 (2007).

    Article  Google Scholar 

  67. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, J. Nuclear Mater. 470, 170–178. https://doi.org/10.1016/j.jnucmat.2015.12.034 (2016).

    Article  Google Scholar 

  68. S. Gao, Z. Hu, M. Duchamp, P.S.S.R. Krishnan, S. Tekumalla, X. Song, and M. Seita, Acta Mater. 200, 366–377. https://doi.org/10.1016/j.actamat.2020.09.015 (2020).

    Article  Google Scholar 

  69. M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, and Z. Bojar, Mater. Sci. Eng. A 677, 1–10. https://doi.org/10.1016/j.msea.2016.09.028 (2016).

    Article  Google Scholar 

  70. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Nat. Mater. https://doi.org/10.1038/nmat5021 (2017).

    Article  Google Scholar 

  71. Q. Shi, D. Gu, M. Xia, S. Cao, and T. Rong, Opt. Laser Technol. 84, 9–22. (2016).

    Article  Google Scholar 

  72. Y. Li, K. Zhou, S.B. Tor, C.K. Chua, and K.F. Leong, Int. J. Heat Mass Transf. 108, 2408–2416. (2017).

    Article  Google Scholar 

  73. L. McCusker, R. Von Dreele, D. Cox, D. Louër, and P. Scardi, J. Appl. Crystallogr. 32, 36–50. (1999).

    Article  Google Scholar 

  74. P. Scardi, C.L. Azanza Ricardo, C. Perez-Demydenko, and A.A. Coelho, J. Appl. Crystallogr. 51, 1752–1765. (2018).

    Article  Google Scholar 

  75. T. Shintani, and Y. Murata, Acta Mater. 59, 4314–4322. https://doi.org/10.1016/j.actamat.2011.03.055 (2011).

    Article  Google Scholar 

  76. T. Simm, P. Withers, and J.Q. da Fonseca, Mater. Des. 111, 331–343. (2016).

    Article  Google Scholar 

  77. T. Ungár, A.D. Stoica, G. Tichy, and X.-L. Wang, Acta Mater. 66, 251–261. (2014).

    Article  Google Scholar 

  78. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, Mater. Sci. Eng. A 513, 311–318. (2009).

    Article  Google Scholar 

  79. P. Promoppatum, S.-C. Yao, P.C. Pistorius, and A.D. Rollett, Engineering 3, 685–694. (2017).

    Article  Google Scholar 

  80. Y. Lee, and W. Zhang, Addit. Manuf. 12, 178–188. (2016).

    Google Scholar 

  81. J. Gockel, L. Sheridan, S.P. Narra, N.W. Klingbeil, and J. Beuth, JOM 69, 2706–2710. (2017).

    Article  Google Scholar 

  82. Y. Nishihara, Y. Nakajima, A. Akashi, N. Tsujino, E. Takahashi, K.-I. Funakoshi, and Y. Higo, Am. Miner. 97, 1417–1420. (2012).

    Article  Google Scholar 

  83. P. Mercelis, and J.P. Kruth, Rapid Prototyping J. 12, 254–265. https://doi.org/10.1108/13552540610707013 (2006).

    Article  Google Scholar 

  84. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, and W.E. King, Metall. Mater. Trans. a-Phys. Metall. Mater. Sci. 45A, 6260–6270. https://doi.org/10.1007/s11661-014-2549-x (2014).

    Article  Google Scholar 

  85. L. Guan, J. Cai, X. Yang, Y. Li, and G. Wang, Mater. Corrosion 71, 537–542. https://doi.org/10.1002/maco.201911304 (2020).

    Article  Google Scholar 

  86. Y. Wang, and J. Shi, Procedia Manuf. 26, 941–951. https://doi.org/10.1016/j.promfg.2018.07.121 (2018).

    Article  Google Scholar 

  87. E.G.-E.O. Systems, and E.O.S. Company, HHE 05, 2014. (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research under the Corrosion Control Technologies Program, task order N00024-17-F-8021 under contract N00024-13-D-6400. MO, DJS, and JRT acknowledge support from the same program but under contract N00014-20-1-2293. D.M. and R.K. gratefully acknowledge the support from the Office of Naval Research, Contract No. N00014-17-1-2533 (Dr. Airan Perez, Program Manager). The authors would like to thank Dr. Morgan Trexler and Dr. Jeffrey Maranchi for their program management efforts at JHU/APL. The authors would also like to thank Christopher M. Peitsch, Jarod C. Gagnon, Christopher M. Barr, and Lina Valivullah for their contributions to this work. This research used the Pair Distribution Function Beamline of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rengaswamy Srinivasan or Steven M. Storck.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopcisak, J.J., Ouyang, M., Macatangay, D.A. et al. Improving the Pitting Corrosion Performance of Additively Manufactured 316L Steel Via Optimized Selective Laser Melting Processing Parameters. JOM 74, 1719–1729 (2022). https://doi.org/10.1007/s11837-022-05207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05207-1

Navigation