Skip to main content
Log in

Prediction of the Electron Density of States for Crystalline Compounds with Atomistic Line Graph Neural Networks (ALIGNN)

  • Computational Design of Alloys for Energy Technologies
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Machine learning (ML)-based models have greatly enhanced the traditional materials discovery and design pipeline. Specifically, in recent years, surrogate ML models for material property prediction have demonstrated success in predicting discrete scalar-valued target properties to within reasonable accuracy of their DFT-computed values. However, accurate prediction of spectral targets, such as the electron density of states (DOS), poses a much more challenging problem due to the complexity of the target, and the limited amount of available training data. In this study, we present an extension of the recently developed atomistic line graph neural network to accurately predict DOS of a large set of material unit cell structures, trained to the publicly available JARVIS-DFT dataset. Furthermore, we evaluate two methods of representation of the target quantity: a direct discretized spectrum, and a compressed low-dimensional representation obtained using an autoencoder. Through this work, we demonstrate the utility of graph-based featurization and modeling methods in the prediction of complex targets that depend on both chemistry and directional characteristics of material structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, Phys. Rev. B. https://doi.org/10.1103/PhysRevB.93.115104 (2016).

    Article  Google Scholar 

  2. G. Pilania, A. Mannodi-Kanakkithodi, B.P. Uberuaga, R. Ramprasad, J.E. Gubernatis, and T. Lookman, Sci. Rep. 6, 19375. https://doi.org/10.1038/srep19375 (2016).

    Article  Google Scholar 

  3. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, and C. Wolverton, npj Comput. Mater. https://doi.org/10.1038/npjcompumats.2015.10 (2015).

    Article  Google Scholar 

  4. K. Choudhary, B. DeCost, and F. Tavazza, Phys. Rev. Mater. https://doi.org/10.1103/physrevmaterials.2.083801 (2018).

    Article  Google Scholar 

  5. A.M. Deml, R. O’Hayre, C. Wolverton, and V. Stevanović, Phys. Rev. B. https://doi.org/10.1103/PhysRevB.93.085142 (2016).

    Article  Google Scholar 

  6. F. Faber, A. Lindmaa, O.A. von Lilienfeld, and R. Armiento, Int. J. Quantum Chem. 115, 1094. https://doi.org/10.1002/qua.24917 (2015).

    Article  Google Scholar 

  7. P.R. Kaundinya, K. Choudhary, and S.R. Kalidindi, Phys. Rev. Mater. 5, 063802. https://doi.org/10.1103/PhysRevMaterials.5.063802 (2021).

    Article  Google Scholar 

  8. W. Ye, C. Chen, Z. Wang, I.H. Chu, and S.P. Ong, Nat Commun 9, 3800. https://doi.org/10.1038/s41467-018-06322-x (2018).

    Article  Google Scholar 

  9. L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, and C. Wolverton, Phys. Rev. B. https://doi.org/10.1103/PhysRevB.96.024104 (2017).

    Article  Google Scholar 

  10. A.N. Filanovich and A.A. Povzner, in 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), (2020), pp. 0414–0416.

  11. M. Rupp, A. Tkatchenko, K.R. Muller, and O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301. https://doi.org/10.1103/PhysRevLett.108.058301 (2012).

    Article  Google Scholar 

  12. H. Huo and M. Rupp (2017).

  13. L. Ward, B. Blaiszik, I. Foster, R.S. Assary, B. Narayanan, and L. Curtiss, MRS Commun. 9, 891. https://doi.org/10.1557/mrc.2019.107 (2019).

    Article  Google Scholar 

  14. G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatchenko, A. von Lilienfeld and K.-R. Müller (2012), pp. 449–457

  15. D.M. Wilkins, A. Grisafi, Y. Yang, K.U. Lao, R.A. DiStasio, and M. Ceriotti, Proc. Natl. Acad. Sci. 116, 3401. https://doi.org/10.1073/pnas.1816132116 (2019).

    Article  Google Scholar 

  16. L. Zhang, M. Chen, X. Wu, H. Wang, and R. Car, Phys. Rev. B 102, 041121. https://doi.org/10.1103/PhysRevB.102.041121 (2020).

    Article  Google Scholar 

  17. A. Grisafi, A. Fabrizio, B. Meyer, D.M. Wilkins, C. Corminboeuf, and M. Ceriotti, ACS Cent. Sci. 5, 57–64. https://doi.org/10.1021/acscentsci.8b00551 (2019).

    Article  Google Scholar 

  18. J.M. Alred, K.V. Bets, Y. Xie, and B.I. Yakobson, Compos. Sci. Technol. 166, 3–9. https://doi.org/10.1016/j.compscitech.2018.03.035 (2018).

    Article  Google Scholar 

  19. A. Chandrasekaran, D. Kamal, R. Batra, C. Kim, L. Chen, and R. Ramprasad, npj Comput. Mater. 5, 22. https://doi.org/10.1038/s41524-019-0162-7 (2019).

    Article  Google Scholar 

  20. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, and K.-R. Müller, Nat. Commun. 8, 872. https://doi.org/10.1038/s41467-017-00839-3 (2017).

    Article  Google Scholar 

  21. S. Gong, T. Xie, T. Zhu, S. Wang, E.R. Fadel, Y. Li, and J.C. Grossman, Phys. Rev. B 100, 184103. https://doi.org/10.1103/PhysRevB.100.184103 (2019).

    Article  Google Scholar 

  22. C. Ben Mahmoud, A. Anelli, G. Csányi, and M. Ceriotti, Phys. Rev. B 102, 235130. https://doi.org/10.1103/PhysRevB.102.235130 (2020).

    Article  Google Scholar 

  23. B.C. Yeo, D. Kim, C. Kim, and S.S. Han, Sci. Rep. 9, 5879. https://doi.org/10.1038/s41598-019-42277-9 (2019).

    Article  Google Scholar 

  24. K. Bang, B.C. Yeo, D. Kim, S.S. Han, and H.M. Lee, Sci. Rep. 11, 11604. https://doi.org/10.1038/s41598-021-91068-8 (2021).

    Article  Google Scholar 

  25. P. Borlido, J. Schmidt, A.W. Huran, F. Tran, M.A.L. Marques, and S. Botti, npj Comput. Mater. 6, 96. https://doi.org/10.1038/s41524-020-00360-0 (2020).

    Article  Google Scholar 

  26. J. Singh, J. Non-Cryst. Solids 299–302, 444. https://doi.org/10.1016/S0022-3093(01)00957-7 (2002).

    Article  Google Scholar 

  27. K.F. Garrity, Phys. Rev. B 94, 045122. https://doi.org/10.1103/PhysRevB.94.045122 (2016).

    Article  Google Scholar 

  28. G. Hamaoui, N. Horny, Z. Hua, T. Zhu, J.-F. Robillard, A. Fleming, H. Ban, and M. Chirtoc, Sci. Rep. 8, 11352. https://doi.org/10.1038/s41598-018-29505-4 (2018).

    Article  Google Scholar 

  29. Z. Lin, L.V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133. https://doi.org/10.1103/PhysRevB.77.075133 (2008).

    Article  Google Scholar 

  30. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, and E.K.U. Gross, Phys. Rev. B 89, 205118. https://doi.org/10.1103/PhysRevB.89.205118 (2014).

    Article  Google Scholar 

  31. S.R. Broderick, and K. Rajan, EPL (Europhysics Letters) 95, 57005. https://doi.org/10.1209/0295-5075/95/57005 (2011).

    Article  Google Scholar 

  32. A.P. Bartók, R. Kondor, and G. Csányi, Phys. Rev. B 87, 184115. https://doi.org/10.1103/PhysRevB.87.184115 (2013).

    Article  Google Scholar 

  33. A. Cecen, T. Fast, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 5, 1. https://doi.org/10.1186/s40192-015-0044-x (2016).

    Article  Google Scholar 

  34. S. Kalidindi, Hierarchical Materials Informatics: Novel Analytics for Materials Data, (2015).

  35. S.R. Kalidindi, ISRN Mater. Sci. 2012, 305692. https://doi.org/10.5402/2012/305692 (2012).

    Article  Google Scholar 

  36. T. Xie, and J.C. Grossman, Phys. Rev. Lett. 120, 145301. (2018).

    Article  Google Scholar 

  37. C.W. Park, and C. Wolverton, Phys. Rev. Mat. 4, 063801. https://doi.org/10.1103/PhysRevMaterials.4.063801 (2020).

    Article  Google Scholar 

  38. M. Karamad, R. Magar, Y. Shi, S. Siahrostami, I.D. Gates, and A. Barati Farimani, Phys. Rev. Mater. 4, 093801. https://doi.org/10.1103/PhysRevMaterials.4.093801 (2020).

    Article  Google Scholar 

  39. S.-Y. Louis, Y. Zhao, A. Nasiri, X. Wang, Y. Song, F. Liu, and J. Hu, Phys. Chem. Chem. Phys. 22, 18141. https://doi.org/10.1039/D0CP01474E (2020).

    Article  Google Scholar 

  40. K. Choudhary, and B. DeCost, npj Comput. Mater. 7, 185. https://doi.org/10.1038/s41524-021-00650-1 (2021).

    Article  Google Scholar 

  41. K. Choudhary, I. Kalish, R. Beams, and F. Tavazza, Sci. Rep. 7, 1. (2017).

    Article  Google Scholar 

  42. K. Choudhary, and F. Tavazza, Comput. Mater. Sci. 161, 300. (2019).

    Article  Google Scholar 

  43. K. Choudhary, Q. Zhang, A.C. Reid, S. Chowdhury, N. Van Nguyen, Z. Trautt, M.W. Newrock, F.Y. Congo, and F. Tavazza, Sci. Data 5, 180082. (2018).

    Article  Google Scholar 

  44. K. Choudhary, K.F. Garrity, and F. Tavazza, J. Phys. Condens. Matter 32, 475501. https://doi.org/10.1088/1361-648x/aba06b (2020).

    Article  Google Scholar 

  45. K. Choudhary, K.F. Garrity, A.C.E. Reid, B. De Cost, A.J. Biacchi, A.R. Hight Walker, Z. Trautt, J. Hattrick-Simpers, A.G. Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. Zhuang, S.V. Kalinin, B.G. Sumpter, G. Pilania, P. Acar, S. Mandal, K. Haule, D. Vanderbilt, K. Rabe and F. Tavazza, npj Comput. Mater. 6, 173 (2020). doi:https://doi.org/10.1038/s41524-020-00440-1

  46. Y. Wang, H. Yao, and S. Zhao, Neurocomput 184, 232–242. https://doi.org/10.1016/j.neucom.2015.08.104 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

P.R.K. and S.R.K. gratefully acknowledge support from ONR N00014-18-1-2879. The Hive cluster at Georgia Institute of Technology (supported by NSF 1828187) was used for this work. We would like to thank Brian DeCost for the helpful discussion.

Funding

The authors declare that no known competing financial interests have influenced the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya R. Kalidindi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaundinya, P.R., Choudhary, K. & Kalidindi, S.R. Prediction of the Electron Density of States for Crystalline Compounds with Atomistic Line Graph Neural Networks (ALIGNN). JOM 74, 1395–1405 (2022). https://doi.org/10.1007/s11837-022-05199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05199-y

Navigation