Skip to main content
Log in

Association Law of Sulfur and Different Components in Zinc Smelting High-Sulfur Residue

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The changes in the wetting angle between sulfur and the main minerals in high-sulfur residue were investigated, which reflected the degree of difficulty of association between sulfur and the different minerals under various conditions. Sphalerite, pyrite, gypsum, quartz, and muscovite were selected as the research objects. The experimental results indicated that the wetting angle between sulfur and the five minerals decreases gradually with an increase in the temperature and reaches a stable level at approximately 130°C. Increasing the contents of the additives and the oxygen partial pressure can promote the separation of sulfur and the five minerals. Adding sulfuric acid to the system is conducive to the separation of sulfur and muscovite but not to the separation of sulfur and the other four minerals. Finally, according to the experimental data and a similarity theory, criterion equations for the wetting angle between sulfur and the five minerals were deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.A. Jankola, Hydrometallurgy 39, 63. (1995).

    Article  Google Scholar 

  2. B.D. Krysa, Hydrometallurgy 39, 71. (1995).

    Article  Google Scholar 

  3. Y. Wang, H. Wang, X. Li, and C. Zheng, Hydrometallurgy 195, 105400. (2020).

    Article  Google Scholar 

  4. S. Rao, D. Wang, Z. Liu, K. Zhang, H. Cao, and J. Tao, Hydrometallurgy 183, 38. (2018).

    Article  Google Scholar 

  5. S. Qin, K. Jiang, H. Wang, B. Zhang, Y. Wang, and X. Zhang, Minerals 10, 224. (2020).

    Article  Google Scholar 

  6. O. Chaalal, C.M.R. Madhuranthakam, B. Moussa, and M.M. Hossain, ACS Omega 5, 8151. (2020).

    Article  Google Scholar 

  7. H.W. Scherer, Eur J Agron 14, 81. (2001).

    Article  Google Scholar 

  8. S. Jafarinejad, Chem Int 2, 242. (2016).

    Google Scholar 

  9. J.E. Halfyard and K. Hawboldt, Hydrometallurgy 109, 80. (2011).

    Article  Google Scholar 

  10. E. Jorjani and A. Ghahreman, Hydrometallurgy 171, 333. (2017).

    Article  Google Scholar 

  11. F. Liu, J. Wang, C. Peng, Z. Liu, B.P. Wilson, and M. Lundström, Hydrometallurgy 185, 38. (2019).

    Article  Google Scholar 

  12. E.B. Khazieva, V.V. Sviridov, S.S. Naboychenko, and V.A. Menshchikov, Solid State Phenom 265, 1104. (2017).

    Article  Google Scholar 

  13. E.B. Kolmachikhina, E.A. Ryzhkova, and D.V. Dmitrieva, Solid State Phenom 299, 1121. (2020).

    Article  Google Scholar 

  14. S.S. Gómez, L. Bonavera, J.C. Landeira, P. Blanco, F. Blanco, M.L. Sánchez, and F.J.D. Cos, J Mater Res Technol 9, 8117. (2020).

    Article  Google Scholar 

  15. H. Shih, C. Yu, M. Wu, C. Liu, C. Tsai, D. Hung, C. Wu, and H. Kuo, Toxicol Ind Health 27, 691. (2011).

    Article  Google Scholar 

  16. P. Peng, H. Xie, and L. Lu, Hydrometallurgy 80, 265. (2005).

    Article  Google Scholar 

  17. Y. Fan, Y. Liu, L. Niu, T. Jing, and T. Zhang, Hydrometallurgy 186, 162. (2019).

    Article  Google Scholar 

  18. H. Li, X. Yao, M. Wang, S. Wu, W. Ma, W. Wei, and L. Li, J Air Waste Manage 64, 95. (2014).

    Article  Google Scholar 

  19. H. Li, X. Wu, M. Wang, J. Wang, S. Wu, X. Yao, and L. Li, Sep Purif Technol 138, 41. (2014).

    Article  Google Scholar 

  20. H.K. Lin, J Miner Mater Char Eng 2, 1. (2003).

    Google Scholar 

  21. S.L. Suárez-Gómez, M.L. Sánchez, F. Blanco, J. Ayala, and F.J.C. Juez, J Hazard Mater 336, 168. (2017).

    Article  Google Scholar 

  22. G. Liu, K. Jiang, B. Zhang, Z. Dong, F. Zhang, F. Wang, T. Jiang, and B. Xu, Minerals 11, 89. (2021).

    Article  Google Scholar 

  23. A. Croll, J. Markert, M. Volz, and A. Ostrogorsky, Cryst Res Technol 52, 1. (2016).

    Google Scholar 

  24. W. Brostow, V. Gonçalez, J.M. Perez, and S.C. Shipley, J Adhes Sci Technol 34, 1163. (2020).

    Google Scholar 

  25. N. Shchedrina, Y. Karlagina, T.E. Itina, A. Ramos, D. Correa, A. Tokmacheva-Kolobova, S. Manokhin, D. Lutoshina, R. Yatsuk, I. Krylach, and G. Odintsova, Opt Quant Electron 52, 1 (2020).

  26. S.F. Umanskayaa, P.A. Danilov, S.I. Kudryashov, and A.A. Ionin, B Lebedev, Phys Inst+ 46, 29 (2019).

  27. Y. Shi, T. Chen, P. Li, X. Zhu, and Y. Yang, Geol J China Univ 21, 7. (2015).

    Google Scholar 

  28. H. Li, and S. Zhang, Chinese J Geophys 48, 1384. (2005).

    Google Scholar 

  29. L. Tian, A. Gong, X. Wu, Z. Xu, T. Zhang, Y. Liu, K. Wei, and Z. Yu, J Cent South Univ 27, 1703. (2020).

    Article  Google Scholar 

  30. L. Tian, A. Gong, X. Wu, Y. Liu, Z. Xu, and T. Zhang, Int J Min Met Mater 27, 910. (2020).

    Article  Google Scholar 

  31. Y. Liu, Y. Li, T. Zhang, and N. Feng, JOM 66, 1202. (2014).

    Article  Google Scholar 

  32. L. Tian, Z. Xu, L. Chen, Y. Liu, and T. Zhang, Hydrometallurgy 180, 158. (2018).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Beijing General Institute of Mining and Metallurgy for the assistance with the experimental tests.

Funding

Financial support was provided by the National Key R&D Program of China (2018YFC1902005), the National Nature Science Foundation of China (Nos. 51804136, 52064021, 52074136, 51974140, and 52064018), the China Postdoctoral Science Foundation (nos. 2019T120625 and 2019M652276), the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects (No. 20204BCJL23031), the Jiangxi Province Science Fund for Distinguished Young Scholars (No. 20202ACB213002), the Merit-based postdoctoral research in Jiangxi Province (No. 2019KY09), the Key Projects of Jiangxi Key R&D Plan (No. 20192ACB70017), the cultivation project of the State Key Laboratory of Green Development and High-value Utilization of Ionic Rare Earth Resources in Jiangxi Province (No. 20194AFD44003), the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology (JXUSTQJBJ2020004), and the Distinguished Professor Program of Jinggang Scholars in institutions of higher learning, Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Tian.

Ethics declarations

Conflict of interest

We declare that we have no financial or personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Association Law of Sulfur and Different Components in Zinc-Smelting High-Sulfur Residue.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, A., Xu, JC., Wang, RX. et al. Association Law of Sulfur and Different Components in Zinc Smelting High-Sulfur Residue. JOM 74, 2000–2009 (2022). https://doi.org/10.1007/s11837-022-05173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05173-8

Navigation