Skip to main content
Log in

How Ferric Salt Enhances the First-Stage Acidic Leaching of Chalcocite: Performance of Intermediate Crystallite

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Being the main intermediate species, the performance of digenite (Cu1.8S) and covellite (CuS) crystallite in the leaching process of chalcocite remains unclear. This article investigated chalcocite leaching with varying Fe3+ concentrations. Through characterizing solutions and solid residues by SRXRD (synchrotron radiation x-ray diffraction) and SEM-EDS (scanning electron microscope-energy dispersive spectrometer), the results showed that adding Fe3+ can significantly affect the crystallite status of digenite. Based on unit cell information from SRXRD, at 0.1M Fe3+, the calculated digenite crystallite size was only 8.01 nm while its crystallite size was significantly larger without Fe3+ with the value of 50.84 nm. In addition, SEM images also showed the smaller particle size of digenite with poor crystallite with Fe3+. This report may provide a further performance of intermediate crystallite that how ferric salt and higher solution potential enhance the first-stage acidic leaching of chalcocite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.M. Chen, Y.J. Peng and D. Bradshaw, Miner. Eng. 58, 64. (2014).

    Article  Google Scholar 

  2. W.Q. Qin, J.J. Wu, F. Jiao and J.M. Zeng, Int. J. Min. Sci. Technol. 27, 1043. (2017).

    Article  Google Scholar 

  3. Y.S. Gao, Z.Y. Gao, W. Sun, Z.G. Yin, J.J. Wang and Y.Y. Hu, J. Colloid Interface Sci. 512, 39. (2018).

    Article  Google Scholar 

  4. Y.X. Zheng, J.F. Lv, Z.N. Lai, Z.T. Lan and H. Wang, J. Clean. Prod. 231, 110. (2019).

    Article  Google Scholar 

  5. C.L. Brierley, Hydrometallurgy 94, 2. (2008).

    Article  Google Scholar 

  6. C.L. Brierley, Hydrometallurgy 104, 324. (2010).

    Article  Google Scholar 

  7. Z.Y. Lan, Y.H. Hu, J.S. Liu, J. Wang and J. Cent, South Univ. Technol. 12, 45. (2005).

    Article  Google Scholar 

  8. H.B. Zhao, J. Wang, X.W. Gan, X.H. Zheng, L. Tao, M.H. Hu, Y.N. Li, W.Q. Qin, Y.S. Zhang and G.Z. Qiu, Bioresour. Technol. 194, 28. (2015).

    Article  Google Scholar 

  9. H.B. Zhao, X.T. Huang, M.H. Hu, C.Y. Zhang, Y.S. Zhang, J. Wang, W.Q. Qin and G.Z. Qiu, Minerals 8, 173. (2018).

    Article  Google Scholar 

  10. R.M. Ruan, J.K. Wen and J.H. Chen, Hydrometallurgy 83(1–4), 77. (2006).

    Google Scholar 

  11. Z.G. Deng, C. Wei and G. Fan, JOM 70(10), 1997. (2018).

    Article  Google Scholar 

  12. A. Valadares, C.F. Valadares, L.R. de Lemos, A.B. Mageste and G.D. Rodrigues, Hydrometallurgy 181, 180. (2018).

    Article  Google Scholar 

  13. R. Ahtiainen, M. Lundstrom and J. Liipo, Miner. Eng. 128, 153. (2018).

    Article  Google Scholar 

  14. J. Wang, X.W. Gan, H.B. Zhao, M.H. Hu, K.Y. Li, W.Q. Qin and G.Z. Qiu, Miner. Eng. 98, 264. (2016).

    Article  Google Scholar 

  15. Y.S. Zhang, H.B. Zhao, Y.J. Zhang, H.W. Liu, H.Q. Yin, J.S. Deng and G.Z. Qiu, Hydrometallurgy 191, 105217. (2020).

    Article  Google Scholar 

  16. S.L. Reddy, M. Fayazuddin, R.L. Frost and T. Endo, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 68(3), 420–423. (2007).

    Article  Google Scholar 

  17. J. Petersen and D.G. Dixon, Hydrometallurgy 2003: Fifth International Conference in Honor of Professor Ian M. Ritchie. TMS, pp. 351–364 (2003).

  18. J. Petersen and D.G. Dixon, Microbial Processing of Metal Sulfides (Springer, Dordrecht, The Netherlands, 2007), pp 193–218.

    Book  Google Scholar 

  19. H.R. Watling, Hydrometallurgy 84(1–2), 81. (2006).

    Article  Google Scholar 

  20. X.P. Niu, R.M. Ruan, Q.Y. Tan, Y. Jia and H.Y. Sun, Hydrometallurgy 155, 141. (2015).

    Article  Google Scholar 

  21. B.C. Tanda, J.J. Eksteen and E.A. Oraby, Hydrometallurgy 178, 264. (2018).

    Article  Google Scholar 

  22. C.Y. Cheng and F. Lawson, Hydrometallurgy 27, 249. (1991).

    Article  Google Scholar 

  23. M.C. Ruiz, S. Honores and R. Padilla, Metall. Mater. Trans. B 29B, 961. (1998).

    Article  Google Scholar 

  24. H. Miki, M. Nicol and L. Velásquez-Yévenes, Hydrometallurgy 105, 321. (2011).

    Article  Google Scholar 

  25. L.S. Whiteside and R.J. Goble, Can. Mineral. 24, 247. (1986).

    Google Scholar 

  26. C.J. Fang, S.C. Yu, X.X. Wang, H.B. Zhao, W.Q. Qin, G.Z. Qiu and J. Wang, Minerals 8, 461. (2018).

    Article  Google Scholar 

  27. E.M. Arce and I. Gonzalez, Int. J. Miner. Process. 67, 17. (2002).

    Article  Google Scholar 

  28. A.E. Elsherief, A.E. Saba and S.E. Afifi, Miner. Eng. 8(9), 967. (1995).

    Article  Google Scholar 

  29. H.B. Zhao, Y.S. Zhang, X. Zhang, L. Qian, M.L. Sun, Y. Yang, Y.S. Zhang, J. Wang, H. Kim and G.Z. Qiu, Miner. Eng. 136, 140. (2019).

    Article  Google Scholar 

  30. C.J. Fang, S.C. Yu, X.Y. Wei, H. Peng, L.M. Ou, G.F. Zhang and J. Wang, Miner. Eng. 144, 106051. (2019).

    Article  Google Scholar 

  31. H.C. Liu, J.L. Xia and Z.Y. Nie, Miner. Eng. 106, 22. (2017).

    Article  Google Scholar 

  32. Y. Yang, S. Harmer and M. Chen, Miner. Eng. 69, 185. (2014).

    Article  Google Scholar 

  33. R.G. Acres, S.L. Harmer and D.A. Beattie, Int. J. Miner. Process. 94, 43. (2010).

    Article  Google Scholar 

  34. D. Majuste, S.T. Ciminelliv and P.J. Eng, Hydrometallurgy 131, 54. (2013).

    Article  Google Scholar 

  35. C.J. Fang, Z.Y. Chang, Q.M. Feng, W. Xiao, S.C. Yu, G.Z. Qiu and J. Wang, Minerals 7, 195. (2017).

    Article  Google Scholar 

  36. X.X. Wang, R. Liao, H.B. Zhao, M.X. Hong and J. Wang, Hydrometallurgy 176, 9. (2017).

    Article  Google Scholar 

  37. J.H. Fang, Y. Liu, W.L. He, W.Q. Qin, G.Z. Qiu and J. Wang, Trans. Nonferrous Met. Soc. China 27, 1150. (2017).

    Article  Google Scholar 

  38. P. Scherrer, Nachr. Ges. Wiss. Gottingen 26, 98. (1918).

    Google Scholar 

  39. J.I. Langford and A.J.C. Wilson, J. Appl. Cryst. 11, 102. (1978).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (52004086, U1932129, 51774332, 51904096 and 51964024), Natural Science Foundation of Hunan Province (2018JJ1041), The Key Project of Science and Technology of Henan Province (202102310543), Key Research Project of Colleges and Universities in Henan Province (21A440007) and Natural Science Foundation of Henan Polytechnic University (B2020-27). Authors acknowledge the staff and professors of the Beijing Synchrotron Radiation Facility (BSRF) and Shanghai Synchrotron Radiation Facility (SSRF) for their help in beamline operation, data collection and direction. We acknowledge the facilities of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Peng or Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Cai, T., Yu, S. et al. How Ferric Salt Enhances the First-Stage Acidic Leaching of Chalcocite: Performance of Intermediate Crystallite. JOM 74, 1969–1977 (2022). https://doi.org/10.1007/s11837-022-05171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05171-w

Navigation