Skip to main content
Log in

Basic Physical Properties of Aluminum Alloys and Their Electrolyte Systems Prepared by Molten Salt Electrolysis Using Black Aluminum Dross as Raw Material

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The density and surface tension of the proposed molten salt system of different components Na3AlF6-AlF3-CaF2-BAD were measured by Archimedes and separation methods at 940–980°C. The dissolution rate of black aluminum dross (BAD) and aluminum oxide in the electrolyte after denitrification was compared. The aluminum alloy was prepared from BAD raw materials, and the influence of BAD content on alloy composition was studied. The results showed that the electrolyte system density and surface tension exhibited a downward trend with increasing temperature, aluminum fluoride content, and BAD content. Other impurity elements in BAD had only limited influence on the density and surface tension of the electrolyte system. The dissolution rate of denitrified BAD in the electrolyte was slightly greater than that of alumina. The content of each metal element in the aluminum alloy increased with increasing proportion of BAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Meshram and K.K. Singh, Resour. Conserv. Recycl. 130, 95. (2018).

    Article  Google Scholar 

  2. M. Mostafa and A. Ali, J. Environ. Manag. 223, 452. (2018).

    Article  Google Scholar 

  3. W.J. Bruckard and J.T. Woodcock, Int. J. Miner. Process. 93, 1. (2009).

    Article  Google Scholar 

  4. X.L. Huang, A. El Badawy, M. Arambewela, R. Ford, M. Barlaz, and T. Tolaymat, J. Hazard. Mater. 273, 192. (2014).

    Article  Google Scholar 

  5. K.T. Hu, D. Reed, T.J. Robshaw, R.M. Smith, and M.D. Ogden, J. Hazard. Mater. 401, 1873. (2020).

    Google Scholar 

  6. M. Mahinroosta and A. Allahverdi, J. Clean. Prod. 179, 93. (2018).

    Article  Google Scholar 

  7. A. Meshram, A. Jain, D. Gautam, and K.K. Singh, J. Environ. Manag. 232, 978. (2019).

    Article  Google Scholar 

  8. L.Q. He, L. Shi, Q.Z. Huang, W. Hayat, Z.B. Shang, T.F. Ma, and M. Wang, Sci. Total Environ. 777, 146123. (2021).

    Article  Google Scholar 

  9. M. Castro, J. Robles, D. Hernández, J. Bocardo, and J. Torres, Ceram. Int. 35, 921. (2009).

    Article  Google Scholar 

  10. E. Ewais and N. Besisa, Mater. Des. 141, 110. (2018).

    Article  Google Scholar 

  11. J.J. Zhang, B. Liu, S. Zhao, H.L. Shen, J. Liu, and S.G. Zhang, Constr. Build. Mater. 262, 120781. (2020).

    Article  Google Scholar 

  12. A.M. Amer, JOM 54, 72. (2002).

    Article  Google Scholar 

  13. A.M. Amer, J. Miner. Met. Mater. Soc. 62, 60. (2010).

    Article  Google Scholar 

  14. A. Lopez-Delgado, J.I. Robla, S. Lopez-Andres, I. Padilla, and M. Romero, J. Clean. Prod. 255, 120178. (2020).

    Article  Google Scholar 

  15. T. Hiraki, A. Nosaka, N. Okinaka, and T. Akiyama, ISIJ Int. 49, 1644. (2009).

    Article  Google Scholar 

  16. M. Yoldi, E.G. Fuentes-Ordoñez, S.A. Korili, and A. Gil, Microporous Mesoporous Mater. 287, 183. (2019).

    Article  Google Scholar 

  17. Y.Q. Liu, B.S. Leong, Z.T. Hu, and E.H. Yang, Constr. Build. Mater. 148, 140. (2017).

    Article  Google Scholar 

  18. D. Bajare, A. Korjakins, J. Kazjonovs, and I. Rozenstrauha, J. Eur. Ceram. Soc. 32, 141. (2012).

    Article  Google Scholar 

  19. S.Y. Zhang, F.Y. Ren, H.X. Ding, J.P. Qiu, Y.S. Tian, and N. Liu, Constr. Build. Mater. 279, 122434. (2021).

    Article  Google Scholar 

  20. R. Beheshti, J. Moosberg-Bustnes, and S. Akhtar, J. Sustain. Metall. 3, 1. (2016).

    Google Scholar 

  21. Z.P. Zuo, H. Lv, R.B. Li, F.Q. Liu, and H.L. Zhao, Resour. Conserv. Recycl. 174, 105768. (2021).

    Article  Google Scholar 

  22. H. Lv, H.L. Zhao, Z.P. Zuo, R.B. Li, and F.Q. Liu, J. Mark. Res. 9, 9735. (2020).

    Google Scholar 

  23. Q. Zhu and X.F. Wang, Bull. Chin. Ceram Soc. 32, 087. (2013).

    Google Scholar 

  24. C. Liao, B. Cai, and X. Wang, J. Mol. Liq. 301, 112453. (2020).

    Article  Google Scholar 

  25. G.J. Janz, J. Phys. Chem. Ref. Data 9, 791. (1980).

    Article  Google Scholar 

  26. M. Kucharík and R. Vasiljev, J. Z. Naturforschung A 61, 7. (2006).

    Article  Google Scholar 

  27. K. Itoh and E. Nakamura, Sumitomo Light Met. Tech. Rep. 34, 317. (1993).

    Google Scholar 

  28. P. Lavoie, M.P. Taylor, and J.B. Metson, Metall. Mater. Trans. B. 47, 2690. (2016).

    Article  Google Scholar 

  29. Y. Yang, B. Gao, and Z. Wang, JOM 67, 973. (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2019YFC1908403). The authors are grateful to the reviewers who helped to improve the paper by many pertinent comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Conceptualization, Investigation, Data curation, Writing-original draft. FL: Methodology, Conceptualization, Resources, Writing-review and editing. HZ: Conceptualization, Writing-review and editing. YL: Supervision, Data curation. JK: Supervision, Data curation. GY: Supervision, Data curation, Conceptualization.

Corresponding authors

Correspondence to Fengqin Liu or Hongliang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Z., Liu, Y., Kang, J. et al. Basic Physical Properties of Aluminum Alloys and Their Electrolyte Systems Prepared by Molten Salt Electrolysis Using Black Aluminum Dross as Raw Material. JOM 74, 2037–2046 (2022). https://doi.org/10.1007/s11837-021-05149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05149-0

Navigation