Skip to main content

Plastic Flow Under Shear-Compression at the Micron Scale-Application on Amorphous Silica at High Strain Rate

Abstract

A new measurement technique based on microshear has been developed. This technique, inspired from a macroscopic test called the Shear Compression Specimen, was developed at the micron scale by making the specimen using FIB technology, and by compressing it using an in situ SEM nano-indenter. The experimental tests applied on the fused silica show a good repeatability of the data, at low and high strain rates (2000 s−1). Numerical simulation revealed that the deformation in the Microshear Compression Specimen is mainly shear. This approach allows a better understanding of surface shear properties at the micron scale, which is of primary importance for tribological surfaces. It can also help to better understand the surface mechanical properties of pressure dependent materials. Finally, since the shear is applied on a very small gauge in the specimen, it opens the way to very high strain rate experiments (104 s−1 strain rate).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  2. J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, and J. Michler, JOM 67, 1684 (2015).

    Article  Google Scholar 

  3. A. Viat, G. Guillonneau, S. Fouvry, G. Kermouche, S. Sao Joao, J. Wehrs, J. Michler, and J.F. Henne, Wear 392, 60 (2017).

    Article  Google Scholar 

  4. A. Dreano, S. Fouvry, S. Sao-Joao, J. Galipaud, and G. Guillonneau, Wear 440–441, 203101 (2019).

    Article  Google Scholar 

  5. G. Molnar, P. Ganster, A. Tanguy, E. Barthel, and G. Kermouche, Acta Mater. 111, 129 (2016).

    Article  Google Scholar 

  6. G. Molnar, G. Kermouche, and E. Barthel, Mech. Mater. 114, 1 (2017).

    Article  Google Scholar 

  7. C. Mayr, G. Eggeler, G.A. Webster, and G. Peter, Mater. Sci. Eng. A 199, 121 (1995).

    Article  Google Scholar 

  8. J.-K. Heyer, S. Brinckmann, J. Pfetzing-Micklich, and G. Eggeler, Acta Mater. 62, 225 (2014).

    Article  Google Scholar 

  9. D. Rittel, S. Lee, and G. Ravichandran, Exp. Mech. 42, 58 (2002).

    Article  Google Scholar 

  10. A. Dorogoy and D. Rittel, Exp. Mech. 45, 167 (2005).

    Article  Google Scholar 

  11. A. Dorogoy and D. Rittel, Exp. Mech. 45, 178 (2005).

    Article  Google Scholar 

  12. A. Dorogoy and D. Rittel, Exp. Mech. 46, 355 (2006).

    Article  Google Scholar 

  13. A. Dorogoy and D. Rittel, Exp. Mech. 49, 881 (2008).

    Article  Google Scholar 

  14. A. Dorogoy, D. Rittel, and A. Godinger, Exp. Mech. 55, 1627 (2015).

    Article  Google Scholar 

  15. M. Ames, J. Markmann, and R. Birringer, Mater. Sci. Eng. A 528, 526 (2010).

    Article  Google Scholar 

  16. M. Ames, M. Grewer, C. Braun, and R. Birringer, Mater. Sci. Eng. A 546, 248 (2012).

    Article  Google Scholar 

  17. R. Rabe, J.-M. Breguet, P. Schwaller, S. Stauss, F.-J. Haug, J. Patscheider, and J. Michler, Thin Solid Films 469–470, 206 (2004).

    Article  Google Scholar 

  18. R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, and S. Queste, Int. J. Appl. Glass Sci. 3, 36 (2012).

    Article  Google Scholar 

  19. G. Guillonneau, M. Mieszala, J. Wehrs, J. Schwiedrzik, S. Grop, D. Frey, L. Philippe, J.-M. Breguet, J. Michler, and J.M. Wheeler, Mater. Des. 148, 39 (2018).

    Article  Google Scholar 

  20. J.P. Best, G. Guillonneau, S. Grop, A.A. Taylor, D. Frey, Q. Longchamp, T. Schar, M. Morstein, J.-M. Breguet, and J. Michler, Surf. Coat. Technol. 333, 178 (2018).

    Article  Google Scholar 

  21. S. Breumier, S. Sao-Joao, A. Villani, M. Lévesque, and G. Kermouche, Mater. Des. 193, 108789 (2020).

    Article  Google Scholar 

  22. G. Kermouche, G. Guillonneau, J. Michler, J. Teisseire, and E. Barthel, Acta Mater. 114, 146 (2016).

    Article  Google Scholar 

  23. G. Kermouche, E. Barthel, D. Vandembroucq, and Ph. Dubujet, Acta Mater. 56, 3222 (2008).

    Article  Google Scholar 

  24. R. Ramachandramoorthy, J. Schwiedrzik, L. Petho, C. Guerra-Nuñez, D. Frey, J.-M. Breguet, and J. Michler, Nano Lett. 19, 2350 (2019).

    Article  Google Scholar 

Download references

Funding

This work was supported by the RATES project (ANR-20-CE08-0022) and by the LABEX MANUTECH-SISE (ANR-10-LABX-0075) operated by French National Research Agency (ANR). The authors would also like to thank the Region Auvergne-Rhône-Alpes (within the SCUSI project) and “fédération IngéLyse” for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaylord Guillonneau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file2 (MP4 89 kb)

Supplementary file1 (PDF 433 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guillonneau, G., Sao Joao, S., Adogou, B. et al. Plastic Flow Under Shear-Compression at the Micron Scale-Application on Amorphous Silica at High Strain Rate. JOM 74, 2231–2237 (2022). https://doi.org/10.1007/s11837-021-05142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05142-7