Skip to main content
Log in

Real-Time Analysis of 18O2-13CO2 Mixed Gas Decarburization Mechanism by Online Mass Spectrometry

  • Decarbonization of Pyrometallurgical Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The application of O2-CO2 mixture injection to achieve decarburization is an effective technology for reducing emissions in steelmaking. In order to reveal the non-equilibrium reaction mechanism, online mass spectrometry and 18O2-13CO2 dual isotope gases were used to analyze the decarburization process in real time. The results show that the real-time analysis method can reflect the evolution process dynamically. Although the overall decarburization rate keeps basically constant, the proportion of O2 directly producing CO2 decreases, whereas the proportion of post-combustion increases because part of the injected O2 and produced CO undergo a post-combustion reaction on the surface layer. O2 still reacts with [C] to form CO2 when the gas supply is sufficient, but when the gas supplies are critical and insufficient, the proportion of O2 reacting with [C] to form CO2 decreases to 0 and O2 only reacts to form CO during the decarburization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.C. Grimston, V. Karakoussis, R. Fouquet, R.V. Vorst, P. Pearson, and M. Leach, Clim. Policy 1(2), 155 (2001).

    Article  Google Scholar 

  2. K. Dong and X. Wang, Metals 9(3), 273 (2019).

    Article  Google Scholar 

  3. R. Zhu, B. Han, K. Dong, and G. Wei, IJMMM 27(11), 1421 (2020).

    Google Scholar 

  4. Z. Liu, P.T. Jones, B. Blanpain, and M. Guo, ISIJ Int. 62(5), 1337 (2021).

    Article  Google Scholar 

  5. N.J. Simento, H.G. Lee, and P.C. Hayes, ISIJ Int. 39(12), 1217 (1999).

    Article  Google Scholar 

  6. K. Taguchi, H.O. Nakazato, T. Usui, and K. Marukawa, Metall. Mater. Trans. B. 34B(6), 861 (2003).

    Article  Google Scholar 

  7. W. Du, Y. Wang, and G. Wen, EPD Cong. 2015, 101 (2015).

    Google Scholar 

  8. G. Wen, Y. Wang, and W. Du, J. Chongqing Univ. 38(5), 66 (2015).

    Google Scholar 

  9. H. Wang, N.N. Viswanathan, N.B. Ballal, and S. Seetharaman, High Temp. Mat. PR-ISR. 28(6), 407 (2009).

    Article  Google Scholar 

  10. C. Yi, R. Zhu, B. Chen, C. Wang, and J. Ke, ISIJ Int. 49(11), 1694 (2009).

    Article  Google Scholar 

  11. M. Lv, R. Zhu, X. Wei, H. Wang, and X. Bi, Steel Res. Int. 83(1), 11 (2012).

    Article  Google Scholar 

  12. Z. Li, R. Zhu, G. Ma, and X. Wang, Ironmak. Steelmak. 44(8), 601 (2017).

    Article  Google Scholar 

  13. G. Wei, R. Zhu, T. Tang, K. Dong, and X. Wu, Metall. Mater. Trans. B. 50B(2), 1077 (2019).

    Article  Google Scholar 

  14. B. Han, G. Wei, R. Zhu, W. Wu, J. Jiang, C. Feng, J. Dong, S. Hu, and R. Liu, J. CO2 Util. 34, 53 (2019).

    Article  Google Scholar 

  15. Z. Liu, P.T. Jones, M. Kendall, B. Blanpain, and M. Guo, ISIJ Int. 61(5), 1357 (2021).

    Article  Google Scholar 

  16. H. Matsuura and F. Tsukihashi, ISIJ Int. 55(2), 412 (2015).

    Google Scholar 

  17. X. You, S. He, M. Zhang, J. Zeng, L. Li, Q. Wang, Q. Wang, and Y. Li, Steel Res. Int. 91(2), 19900450 (2019).

    Google Scholar 

  18. A.W. Cramb and G.R. Belton, Metall. Trans. B. 12, 699 (1981).

    Article  Google Scholar 

  19. R.J. Fruehan and S. Antolin, Metall. Trans. B. 18, 415 (1987).

    Article  Google Scholar 

  20. X. Hu, H. Matsuura, and F. Tsukihashi, Metall. Mater. Trans. B. 37B(3), 395 (2006).

    Article  Google Scholar 

  21. X. Hu, T. Zhang, K. Chou, H. Matsuura, and F. Tsukihashi, Steel Res. Int. 83(9), 886 (2012).

    Article  Google Scholar 

  22. X. Hu, T. Zhang, H. Yan, H. Matsuura, F. Tsukihashi, and K. Chou, ISIJ Int. 52(9), 1529 (2012).

    Article  Google Scholar 

  23. T. Zhang, X. Hu, and K. Chou, IJMMM 20(2), 125 (2013).

    Google Scholar 

  24. H. Yan, X. Hu, L. Chao, C. Li, R. Zhu, and G. Zhou, Chem. Ind. Eng. Prog. 37(12), 4572 (2018).

    Google Scholar 

  25. Y. Fan, X. Hu, P. Wang, and Y. Li, Chin. J. Eng. 42(S), 34 (2020).

    Google Scholar 

  26. P.C. Glawa and R.J. Fruehan, Metall. Trans. B. 16(3), 551 (1985).

    Article  Google Scholar 

  27. J. Lee and K. Morita, Scand. J. Metall. 34(2), 131 (2005).

    Article  Google Scholar 

  28. A. Kobayashi, F. Tsukihashi, and N. Sano, ISIJ Int. 33(11), 1131 (1993).

    Article  Google Scholar 

  29. Y. Fan, X. Hu, R. Zhu, and K. Chou, ISIJ Int. 60(5), 848 (2020).

    Article  Google Scholar 

  30. Y. Fan, X. Hu, R. Zhu, and K. Chou, Steel Res. Int. 91(8), 2000127 (2020).

    Article  Google Scholar 

  31. H.G. Lee and Y.K. Rao, Metall. Trans. B. 13B, 411 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51334001) and the Independent Research and Development Project of the State Key Laboratory of Advanced Metallurgy (No. 41618011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Hu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Hu, X., Zhu, R. et al. Real-Time Analysis of 18O2-13CO2 Mixed Gas Decarburization Mechanism by Online Mass Spectrometry. JOM 74, 869–877 (2022). https://doi.org/10.1007/s11837-021-05116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05116-9

Navigation