Skip to main content
Log in

Sequestering of Radioactive Thorium from Wastewater Using Highly Porous Silica Monoliths

  • Recovery of Rare Earth and Critical Metals from Unconventional Sources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fabrications of new mesoporous silica adsorbents for radioactive element removal/recovery are of economic and environmental concern. Herein, a mesoporous monolithic cage of phosphonate functionalized silica (MMCS@phosphonate) was synthesized and applied for Th(IV) removal from an aqueous solution. The results demonstrate that Th(IV) adsorption is rapid, and after approximately 90 min the sorption process approaches balance (pH 3.9). The adsorption process can be well described by the Langmuir equation with a maximum sorption capacity of 120 mg/g. Moreover, the adsorption percentage increases with the mass of MMCS@phosphonate until almost complete adsorption (98.05%). Without major modifications of its composition, the mesoporous sorbent was successfully regenerated with nitric acid. Due to the inexpensive cost of silica (as a source of the adsorbent), and higher activity toward thorium ions, the MMCS@phosphonate can be of practical interest for applications in the effective extraction of trace thorium ions from acidic solutions (pH 3.5–3.9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. René, Nature, sources, resources, and production of thorium, in: Descriptive Inorganic Chemistry Researches of Metal Compounds (London, IntechOpen, 2017) pp. 201–212.

  2. T.P. Mernagh and Y. Miezitis, A review of the geochemical processes controlling the distribution of thorium in the Earth’s crust and Australia’s thorium resources. Geoscience Australia Record, 2008/05, 48 p.

  3. I.A. Bhatti, M.A. Hayat, and M. Iqbal, J. Chem. Soc. Pak. 34, 1012 (2012).

    Google Scholar 

  4. M. Eisenbud, Environmental Radioactivity, from Natural, Industrial and Military Sources (Academic Press, London, 1987).

    Book  Google Scholar 

  5. S.A. Sadeek, M.A. El-Sayed, M.M. Amine, and M.O. Abd El-Magied, J. Radioanal. Nucl. Chem. 299, 1299 (2014).

    Article  Google Scholar 

  6. M.O. Abd El-Magied, A.A. Tolba, H.S. El-Gendy, S.A. Zaki, and A.A. Atia, Hydrometallurgy 169, 89 (2017).

    Article  Google Scholar 

  7. S.A. Sadeek, E.M.M. Moussa, M.A. El-Sayed, M.M. Amine, and M.O. Abd El-Magied, J. Dispers. Sci. Technol. 35, 926 (2014).

    Article  Google Scholar 

  8. K.W. Chung, H.S. Yoon, C.J. Kim, J.Y. Lee, and R.K. Jyothi, J. Ind. Eng. Chem. 83, 72 (2020).

    Article  Google Scholar 

  9. M.O. Abd El-Magied, E.A. Elshehy, E.S. Manaa, A.A. Tolba, and A.A. Atia, Ind. Eng. Chem. Res. 55, 11338 (2016).

    Article  Google Scholar 

  10. G. Guo, Y. Lu, D. Yang, X. Li, and M. Gong, J. Radioanal. Nucl. Chem. 327, 667 (2021).

    Article  Google Scholar 

  11. S.K. Pradhan, and B. Ambade, J. Radioanal. Nucl. Chem. 329, 115 (2021).

    Article  Google Scholar 

  12. X. Yang, Z. Zhang, S. Kuang, H. Wei, Y. Li, G. Wu, A. Geng, Y. Li, and W. Liao, Hydrometallurgy 194, 105343 (2020).

    Article  Google Scholar 

  13. N.T. Hung, L.B. Thuan, T.C. Thanh, M. Watanabe, D.V. Khoai, N.T. Thuy, H. Nhuan, P.Q. Minh, T.H. Mai, N.V. Tung, D.T.T. Tra, M.K. Jha, J.Y. Lee, and R.K. Jyothi, Hydrometallurgy 198, 105506 (2020).

    Article  Google Scholar 

  14. R.B. Gujar, P.K. Mohapatra, M. Iqbal, J. Huskens, and W. Verboom, J. Chromatogr. A. https://doi.org/10.1016/j.chroma.2021.462401 (2021).

    Article  Google Scholar 

  15. M.F. Cheira, SN Appl. Sci. 2, 398 (2020).

    Article  Google Scholar 

  16. M. Tuzen, A. Sarı, and T.A. Saleh, Chem. Eng. Res. Des. 163, 76 (2020).

    Article  Google Scholar 

  17. B.R. Broujeni, A. Nilchi, and F. Azadi, Environ. Nanotechnol. Monit. Manag. 15, 100400 (2021).

    Google Scholar 

  18. S. Abdi, M. Nasiri, and M.H. Khani, Prog. Nucl. Energy 130, 103537 (2020).

    Article  Google Scholar 

  19. U.H. Kaynar, and I. Şabikoğlu, J. Radioanal. Nucl. Chem. 318, 823 (2018).

    Article  Google Scholar 

  20. R. Karmakar, P. Singh, and K. Sen, Sep. Sci. Technol. https://doi.org/10.1080/01496395.2020.1828461 (2020).

    Article  Google Scholar 

  21. D. Talan and Q. Huang, Minerals 11, 20 (2021).

    Article  Google Scholar 

  22. M.M. Ibrahim, H.S. El-Sheshtawy, M.O. Abd El-Magied, and A.S. Dhmees, Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2021.1900150 (2021).

    Article  Google Scholar 

  23. M.O. Abd El-Magied, E.S.A. Manaa, M.A.M. Youssef, M.N. Kouraim, A.S. Dhmees, and E.M. Eldesouky, J. Radioanal. Nucl. Chem. 327, 745 (2021).

    Article  Google Scholar 

  24. M.O. Abd El-Magied, W.M. Salem, A.A. Daher, and E.A. Elshehy, Colloids Interfaces 2, 14 (2018).

    Article  Google Scholar 

  25. Y. Chen, Y. Liu, Z. Chen, Q. Shi, J. Gao, H. Ding, X. Tang, and Y. Liu, JOM 71, 4547 (2019).

    Article  Google Scholar 

  26. M.O. Abd El-Magied, A.S. Dhmees, A.A.M. Abd El-Hamid, and E.M. Eldesouky, J. Nucl. Mater. 509, 295 (2018).

    Article  Google Scholar 

  27. A. Tag El-Din, E.A. Elshehy, and M. El-Khouly, J. Env. Chem. Eng. 16, 5845 (2018).

    Article  Google Scholar 

  28. E.A. Elshehy, Sep. Sci. Technol. 52, 2017 (1852).

    Google Scholar 

  29. A. Donia, A.A. Atia, A. Daher, O. Desouky, and E.A. Elshehy, J. Radioanal. Nucl. Ch. 290, 297 (2011).

    Article  Google Scholar 

  30. E.A. Elshehy, M. Shenashen, M.O. Abd El-Magied, D. Tolan, A. El-Nahas, K. Halada, A. Atia, and S. El-Safty, Eur. J. Inorg. Chem 2017, 4823 (2017).

    Article  Google Scholar 

  31. N. Abdelmageed, W.A. El-Said, A.A. Younes, M.S. Atrees, A.B. Farag, E.A. Elshehy, and A.M. Abdelkader, J. Appl. Polym. Sci. https://doi.org/10.1002/app.51263 (2021).

    Article  Google Scholar 

  32. B. Luo, X. Liu, J. Li, X. Chen, L. He, and F. Sun, JOM 73, 1337 (2021).

    Article  Google Scholar 

  33. J. Diao, L. Shao, D. Liu, Y. Qiao, W. Tan, L. Wu, and B. Xie, JOM 70, 2018 (2027).

    Google Scholar 

  34. Y. Zhang, Q. Cheng, D. Wang, D. Xia, X. Zheng, Z. Li, and J.Y. Hwang, JOM 71, 3658 (2019).

    Article  Google Scholar 

  35. K.H. Toumi, Y. Benguerba, A. Erto, G.L. Dotto, C. Tiar, S. Nacef, A. Amrane, and B. Ernst, JOM 71, 791 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Taif University Researchers Supporting Project Number (TURSP-2020/200), Taif University, Taif, Saudi Arabia, for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Alharthi.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, S. Sequestering of Radioactive Thorium from Wastewater Using Highly Porous Silica Monoliths. JOM 74, 1035–1043 (2022). https://doi.org/10.1007/s11837-021-05100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05100-3

Navigation