Skip to main content
Log in

Reduction Swelling Mechanism for Different Types of Pellets Based on Continuous Imaging Analysis

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The charging ratio of pellets in a blast furnace is largely governed by the properties of the reduction swelling index (RSI). The RSI of three types of common pellets—acid, magnesium and magnesium flux—were obtained using the Chinese standard (CS) test and imaging analysis (IA). XRD and SEM were performed to measure the mineral composition and morphology of the pellets. The results indicated that, regardless of the type of pellet, RSI using the CS test was lower than that using IA. The minimum difference was 3.62% for the magnesium pellet, which indicates that CS is suitable for pellets with lower RSI. The RSI of the acid pellet was highest due to the effect of lattice transformation. However, the sufficient bonding strength of the high-melting-point slag with CaO-bearing or MgO-bearing flux pellets could restrain the growth of iron whiskers, thereby decreasing the RSI. Additionally, we concluded that the RSI of pellets reaches its maximum at approximately 30–40 min during reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.F. Wang, Y.D. Pei, C.X. Zhang and Z.X. Zhao, Iron Steel. 51, 1. https://doi.org/10.13228/j.boyuan.issn0449-749x.20150456 (in Chinese) (2016)

    Article  Google Scholar 

  2. J. Wang and W. Zhong, Chin. J. Chem. Eng. 24, 1104. CNKI:SUN:ZHGC.0.2016-08-021 (in Chinese) (2016)

    Article  Google Scholar 

  3. H. Zhou, M. Zhou, Z. Liu, M. Cheng and J. Chen, Fuel 179, 322. https://doi.org/10.1016/j.fuel.2016.03.098 (2016)

    Article  Google Scholar 

  4. J. Li, H.F. An, W.X. Liu, A.M. Yang and M.S. Chu, J. Iron Steel Res. Int. 27, 239. https://doi.org/10.1007/s42243-019-00307-w (2019)

    Article  Google Scholar 

  5. L.T. Kong, Pelletiz. Technol., 2 (2005) (in Chinese)

  6. N. Kiichi, M. Masahiro, K. Masaji and K. Hiroshi, Trans. Iron Steel Inst. Japan 19, 766. https://doi.org/10.2355/tetsutohagane1955.65.3_368 (2010)

    Article  Google Scholar 

  7. G. Qiu, T. Jiang, X. Fan, D. Zhu and Z. Huang, Scand. J. Metall. 33, 39. https://doi.org/10.1111/j.1600-0692.2004.00668.x (2004)

    Article  Google Scholar 

  8. K.W. Ye, Sinter. Pelletiz. 28, 1. CNKI:SUN:SJQT.0.2003-04-000 (in Chinese) (2003)

    Google Scholar 

  9. G. Qing, K. Wu, Y. Tian, G. An and W. Huang, Ironmak. Steelmak. 45, 1. https://doi.org/10.1080/03019233.2016.1242248 (2016)

    Article  Google Scholar 

  10. G.H. Li, Z.K. Tang, Y.B. Zhang, Z.X. Cui and T. Jiang, Ironmak. Steelmak. 37, 393. https://doi.org/10.1179/030192310X12690127076352 (2010)

    Article  Google Scholar 

  11. T. Sharma and B. Prakash, ISIJ Int. 32, 1268. https://doi.org/10.2355/isijinternational.32.1268 (2007)

    Article  Google Scholar 

  12. M. Chang and L.C. De Jonghe, Metall. Mater. Trans. B 15, 685. https://doi.org/10.1007/BF02657290 (1984)

    Article  Google Scholar 

  13. S. El Moujahid and A. Rist, Metall. Mater. Trans. B 19, 787. https://doi.org/10.1007/BF02650198 (1988)

    Article  Google Scholar 

  14. J.Y. Fu, T. Jiang and D.Q. Zhu, Theory of sintering and pelletizing, 1st edn (Changsha: Central South University of Technology Press, 1996), pp. 178. (in Chinese)

  15. N. Mi, O. Aa, H. Mm and E.G. Aa, ISIJ Int. 36, 164. https://doi.org/10.2355/isijinternational.36.164 (2007)

    Article  Google Scholar 

  16. M.K. Şeşen, Scand. J. Metall. 30, 1. https://doi.org/10.1034/j.1600-0692.2001.300101.x (2002)

    Article  Google Scholar 

  17. J. Li, Central South University, Changsha, Study on mechanism and process of direct reduction of pellets made from concentrate and composite binder, 2007. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2008166218.nh&DbName=CDFD2008. (in Chinese)

  18. N. Ponghis, Fuel Energy Abstr. 40, 70. https://doi.org/10.1016/S0140-6701(99)92981-8 (1999)

    Article  Google Scholar 

  19. F.W. Frazer, H. Westenberger, K.H. Boss and W. Thumm, Int. J. Miner. Process. 2, 353. https://doi.org/10.1016/0301-7516(75)90028-9 (1975)

    Article  Google Scholar 

  20. R. Nascimento, M. Mourao and J. Capocchi, Ironmak. Steelmak. 26, 182. https://doi.org/10.1179/030192399677040 (1999)

    Article  Google Scholar 

  21. S. Hayashi and Y. Iguchi, Ironmak. Steelmak. 32, 353. https://doi.org/10.1179/174328105X28838 (2005)

    Article  Google Scholar 

  22. H. Wang and H.Y. Sohn, ISIJ Int. 51, 906. https://doi.org/10.2355/isijinternational.51.906 (2011)

    Article  Google Scholar 

  23. Z.C. Wang, M.S. Chu, Z.G. Liu, Z.Y. Chen and X.X. Xue, J. Iron Steel Res. Int. 19, 10. https://doi.org/10.1016/S1006-706X(12)60144-7 (2012)

    Article  Google Scholar 

  24. T. Sharma and B. Prakash, ISIJ Int. 33, 446. https://doi.org/10.2355/isijinternational.33.446 (1993)

    Article  Google Scholar 

  25. Y.M. Chen, D.Q. Zhu, Y.B. Yang and J.M. Zhuang, Res. Iron Steel 127, 5. CNKI:SUN:GTYJ.0.20 (in Chinese) (2002)

    Google Scholar 

  26. W. Zhao, M. Chu, C. Feng, H. Wang, Z. Liu, J. Tang and W. Wang, Ironmak. Steelmak. 47, 388. https://doi.org/10.1080/03019233.2018.1527538 (2020)

    Article  Google Scholar 

  27. S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee and R. Venugopal, Int. J. Miner. Process. 99, 43. https://doi.org/10.1016/j.minpro.2011.03.004 (2011)

    Article  Google Scholar 

  28. D.Q. Zhu, T.J. Chun, J. Pan and J.L. Zhang, Int. J. Miner. Process. 125, 51. https://doi.org/10.1016/j.minpro.2013.09.008 (2013)

    Article  Google Scholar 

  29. I. Mikko, K. Antti, P. Timo, M. Olli, P. Erkki, K. Mikhail and F. Timo, Int. J. Miner. Process. 141, 34. https://doi.org/10.1016/j.minpro.2015.06.004 (2015)

    Article  Google Scholar 

  30. A. Muran, Phase equilibria among oxides in steelmaking, 1st edn (New York: Addison-Wesley Publishing Co., Inc., 1965), pp. 113.

  31. L.G. Zhang, Z.W. Zhang and T.X. Ren, China Metall. 21, 34. https://doi.org/10.13228/j.boyuan.issn1006-9356.2011.08.008 (in Chinese) (2011)

    Article  Google Scholar 

  32. M.S. Zhou, W.S. Liu, L.W. Zhai and Y.R. Li, China Metall. 16, 23. https://doi.org/10.13228/j.boyuan.issn1006-9356.2006.03.008 (in Chinese) (2006)

    Article  Google Scholar 

  33. X.H. Fan, M. Gan, X.L. Chen and T. Jiang, Iron Steel 44, 6. CNKI:SUN:GANT.0.2009-03-001 (in Chinese) (2009)

    Google Scholar 

  34. S. Fu, Sinter. Pelletiz., 15 (1991) CNKI:SUN:SJQT.0.1991-03-003 (in Chinese)

  35. J. W. Huang and Z. Li, X-ray diffraction of polycrystalline materials: Experimental principle, method and application, 5th edn (Beijing: Metallurgical Industry Press, 2019), pp. 99–103. (in Chinese)

  36. W.B. Wu, Henan Metall. 22, 35. CNKI:SUN:HNYE.0.2014-02-011 (in Chinese) (2014)

    Google Scholar 

  37. Q.J. Gao, F.M. Shen, G. Wei, X. Jiang and H.Y. Zheng, J. Iron Steel Res. Int. 20, 28. https://doi.org/10.1016/S1006-706X(13)60121-1 (2013)

    Article  Google Scholar 

  38. S. Kawatra, Min. Proc. Ext. Met. Rev. 24, 1. https://doi.org/10.1080/08827500306896 (2003)

    Article  Google Scholar 

  39. Q.J. Gao, Northeastern University, Shenyang, PhD dissertation, 2014. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1016009101.nh&DbName=CDFD2017. (in Chinese)

  40. Z.Q. Song, Sinter. Pelletiz. 26, 22. https://doi.org/10.3969/j.issn.1000-8764.2001.06.008 (in Chinese) (2001)

    Article  Google Scholar 

  41. J. Pan, H.B. Yu, D.Q. Zhu, T.J. Chun and J. Cent, South Univ. (Sci and Tech) 47, 2914. https://doi.org/10.11817/j.issn.1672-7207.2016.09.002 (in Chinese) (2016)

    Article  Google Scholar 

  42. L.B. Cheng, Process and calculation of iron and steel, 1st edn (Beijing: Metallurgical Industry Press, 1991), pp. 159. (in Chinese)

  43. S.J. Zhang, Z.Q. Jiang, L.G. Zhu and C.J. Zhang, J. Hebei Polytech. Univ. (Natural Science Edition) 33, 22. CNKI:SUN:HBLG.0.2011-04-007 (in Chinese) (2011)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the project supported by National Natural Science Foundation of China (No. U1960205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Zuo.

Ethics declarations

Conflict of interest

The authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 642 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, K., Zuo, H., Lv, B. et al. Reduction Swelling Mechanism for Different Types of Pellets Based on Continuous Imaging Analysis. JOM 74, 2010–2018 (2022). https://doi.org/10.1007/s11837-021-05074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05074-2

Navigation