Skip to main content
Log in

General Methodology to Investigate the Effect of Process Parameters on the Vibration Properties of Structures Produced by Additive Manufacturing Using Fused Filament Fabrication

  • Solid Freeform Fabrication 2021
  • Published:
JOM Aims and scope Submit manuscript


Advances in fused filament fabrication (FFF) enable the manufacturing of multi-material and multi-functional structures, which provides new opportunities for the development of lightweight and high damping structures for vibration control. However, very few studies mention the vibration characteristics of FFF printed structures. This paper proposes a general methodology to investigate the effect of process parameters, such as raster angle, nozzle temperature, layer height, and deposition speed, on the vibration properties of FFF printed structures. An application of this methodology to structures printed by polylactic acid (PLA) is realized. In terms of vibration properties, a good reproducibility of the FFF process and the vibration test was achieved. It was found that raster angle significantly affects both resonant frequency (16.6%) and loss factor (7.5%). The impact of the other three parameters is relatively low (less than 4%). All these results provide guidance for further application of FFF in the vibration field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. S. Singh, G. Singh, C. Prakash, and S. Ramakrishna, J. Manuf. Process. 55, 288 (2020).

    Article  Google Scholar 

  2. S.H. Masood, and W.Q. Song, Assem. Autom. 25, 309 (2005).

    Article  Google Scholar 

  3. S. Singh, S. Ramakrishna, and R. Singh, J. Manuf. Process. 25, 185 (2017).

    Article  Google Scholar 

  4. K. Mizukami, T. Kawaguchi, K. Ogi, and Y. Koga, Compos. Struct. 255, 112949 (2021).

    Article  Google Scholar 

  5. H. Chim, D.W. Hutmacher, A.M. Chou, A.L. Oliveira, R.L. Reis, T.C. Lim, and J.-T. Schantz, Int. J. Oral Maxillofac. Surg. 35, 928 (2006).

    Article  Google Scholar 

  6. D. Grguraš, and D. Kramar, Stroj. Vestn. – J. Mech. Eng. 63, 567 (2017).

    Article  Google Scholar 

  7. D. Espalin, J. Alberto Ramirez, F. Medina, and R. Wicker, Rapid Prototyp. J. 20, 236 (2014).

    Article  Google Scholar 

  8. K.H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, and C. Daraio, Proc. Natl. Acad. Sci. 113, 8386 (2016).

    Article  Google Scholar 

  9. T. Jiang, C. Li, Q. He, and Z.-K. Peng, Nat. Commun. 11, 2353 (2020).

    Article  Google Scholar 

  10. B.G. Compton, and J.A. Lewis, Adv. Mater. 26, 5930 (2014).

    Article  Google Scholar 

  11. T.J. Gordelier, P.R. Thies, L. Turner, and L. Johanning, Rapid Prototyp. J. 25, 19 (2019).

    Article  Google Scholar 

  12. G.D. Goh, Y.L. Yap, H.K.J. Tan, S.L. Sing, G.L. Goh, and W.Y. Yeong, Crit. Rev. Solid State Mater. Sci. 45, 113 (2020).

    Article  Google Scholar 

  13. O. Luzanin, V. Guduric, I. Ristic, and S. Muhic, Rapid Prototyp. J. 23, 1088 (2017).

    Article  Google Scholar 

  14. N. Suksangpanya, N.A. Yaraghi, R.B. Pipes, D. Kisailus, and P. Zavattieri, Int. J. Solids Struct. 150, 83 (2018).

    Article  Google Scholar 

  15. F.A.C. Sanchez, H. Boudaoud, L. Muller, and M. Camargo, Virtual Phys. Prototyp. 9, 151 (2014).

    Article  Google Scholar 

  16. V. Shanmugam, O. Das, K. Babu, U. Marimuthu, A. Veerasimman, D.J. Johnson, R.E. Neisiany, M.S. Hedenqvist, S. Ramakrishna, and F. Berto, Int. J. Fatigue 143, 106007 (2021).

    Article  Google Scholar 

  17. H. Rezayat, W. Zhou, A. Siriruk, D. Penumadu, and S.S. Babu, Mater. Sci. Technol. 31, 895 (2015).

    Article  Google Scholar 

  18. K. Sreedhara, K. Reddy, and S.N.S.H. Ch, Int. J. Innov. Res. Sci. Eng. Technol. 3297, 4602 (2015).

    Google Scholar 

  19. N.M. Raffic, Int. J. Mech. Prod. Eng. 3, 28 (2017).

    Google Scholar 

  20. F. Carrasco, P. Pagès, J. Gámez-Pérez, O.O. Santana, and M.L. Maspoch, Polym. Degrad. Stab. 95, 116 (2010).

    Article  Google Scholar 

  21. S.H. Ahn, C. Baek, S. Lee, and I.S. Ahn, Int. J. Mod. Phys. B 17, 1510 (2003).

    Article  Google Scholar 

  22. D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, Polym. Test. 69, 157 (2018).

    Article  Google Scholar 

  23. N. Logothetis, Qual. Reliab. Eng. Int. 6, 195 (1990).

    Article  Google Scholar 

  24. S. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, Rapid Prototyp. J. 8, 248 (2002).

    Article  Google Scholar 

  25. C. Ziemian, M. Sharma, and S. Ziemi, in Mechanical Engineering. ed. by M. Gokcek (InTech, 2012).

    Google Scholar 

Download references


The French Ministry of Research (DRRT), the regional Council “Région Lorraine”, and the European Regional Development Fund (FEDER) has contributed to the funding of the vibration and wave propagation platform. Also, the authors would like to thank to the research platform Lorraine Fab Living Lab® for technical assistance in this research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fangkai Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Robin, G., Boudaoud, H. et al. General Methodology to Investigate the Effect of Process Parameters on the Vibration Properties of Structures Produced by Additive Manufacturing Using Fused Filament Fabrication. JOM 74, 1166–1175 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: