Skip to main content
Log in

Equilibrium Phase Relations of the CaO-SiO2-Ti3O5 System at 1400 °C and a p(O2) of 10−16 atm

  • Technology Metals in the Circular Economy of Cities
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The phase relations of TiOx containing systems in reducing atmospheres are extremely important for understanding the smelting process for vanadium titano-magnetite. In the present work, the equilibrium phase relations for the core CaO-SiO2-Ti3O5 system at 1400 °C and oxygen partial pressure of 10−16 atm were determined. Ti3O5 was confirmed as the stable Ti oxide in CO(g)-C equilibrium, and the solid phases Ti3O5, 3CaO·Ti3O5, SiO2, and CaO·SiO2 were found to coexist with the liquid oxide within the composition range investigated. The 1400 °C isothermal phase diagram of the CaO-SiO2-Ti3O5 system was constructed to demonstrate the areas of single liquid, as well as the two-phase and three-phase domains. Furthermore, a comparison with results in the literature indicated that the single liquid domain at 1400 °C greatly shrinks when the oxygen partial pressure decreases from air to 10−16 atm, and the corresponding liquid coexisting phases of TiO2 and CaO·TiO2 transform to Ti3O5 and 3CaO·Ti3O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Gialanella, and A. Malandruccolo, Aerospace Alloys, Topics in Mining, Metallurgy and Materials Engineering, Chapter 4, Titanium and Titanium Alloys (Springer, 2020), p. 129.

  2. M. Hourmand, A.A.D. Sarhan, M. Sayuti, and M. Hamdi, Arab. J. Sci. Eng. 46, 7087 (2021).

    Article  Google Scholar 

  3. Z. Wang, J. Zhang, B. Zhao, and Z. Liu, Calphad 71, 102211 (2020).

    Article  Google Scholar 

  4. R. Gilligan, and A.N. Nikoloski, Miner. Eng. 146, 106106 (2020).

    Article  Google Scholar 

  5. S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, L. Yang, and M. Tang, JOM 71, 323 (2019).

    Article  Google Scholar 

  6. W. Shuai, C. Mao, Y. Guo, J. Tao, and B. Zhao, Calphad 63, 77 (2018).

    Article  Google Scholar 

  7. L. Zhen, H. Zhang, and C. Chou, Metall. Res. Technol. 113(5), 507 (2016).

    Article  Google Scholar 

  8. Z. Li, J. Li, Y. Sun, S. Seetharaman, L. Liu, X. Wang, and Z. Zhang, Metall. Mater. Trans. B 47, 1390 (2016).

    Article  Google Scholar 

  9. J. Sun, S. Wang, M. Chu, M. Chen, Z. Zhao, B. Zhao, and Z. Liu, Ironmaking Steelmaking 47, 545 (2018).

    Article  Google Scholar 

  10. S.A. Kirillova, V.I. Almjashev, and V.V. Gusarov, Russ. J. Inorg. Chem. 56(9), 1464 (2011).

    Article  Google Scholar 

  11. S. Kaneko, H.N. Tran, Y. Kubo, and F. Imoto, Ceram. Int. 11, 143 (1985).

    Article  Google Scholar 

  12. R.C. De Vries, R. Roy, and E.F. Osborn, J. Phys. Chem 58(12), 1069 (1954).

    Article  Google Scholar 

  13. H. Jung, G. Eriksson, P. Wu, and A. Pelton, ISIJ Int. 49(9), 1290 (2009).

    Article  Google Scholar 

  14. I. Shindo, J. Cryst. Growth. 50(4), 839 (1980).

    Article  Google Scholar 

  15. M. Hampl, and R. Schmid-Fetzer, Int. J. Mater. Res. 106(5), 439 (2015).

    Article  Google Scholar 

  16. M. Ilatovskaia, F. Bärtel, and O. Fabrichnaya, Ceram. Int. 46(18), 29402 (2020).

    Article  Google Scholar 

  17. V. Daněk, and I. Nerád, Chem. Pap.-Slovak Acad. Sci. 56(4), 241 (2002).

    Google Scholar 

  18. S. Ueda, K. Takemoto, and T. Ikeda, ISIJ Int. 40, 92 (2000).

    Article  Google Scholar 

  19. M. Kirschen, and C. DeCapitani, J. Phase Equilib. 20(6), 593 (1999).

    Article  Google Scholar 

  20. M. Chen, J. Shi, P. Taskinen, and A. Jokilaakso, Ceram. Int. 46(7), 9183 (2019).

    Article  Google Scholar 

  21. W. Zhen, H. Sun, Z. Lei, and Q. Zhu, J. All. Compd. 671, 137 (2016).

    Article  Google Scholar 

  22. Z. Wang, Q. Zhu, and H. Sun, Metall. Mater. Trans. B 50, 357 (2019).

    Article  Google Scholar 

  23. J. Shi, M. Chen, X. Wan, P. Taskinen, and A. Jokilaakso, JOM 72(9), 3204 (2020).

    Article  Google Scholar 

  24. J. Van Der Colf, and D.D. Howatt, J. South. Afr. Inst. Min. Metall. 79(9), 255 (1979).

    Google Scholar 

  25. G. Tranell, O. Ostrovski, and S. Jahanshahi, Metall. Mater. Trans. B 33B, 61 (2002).

    Article  Google Scholar 

  26. Y. Morizane, B. Ozturk, and J. Fruehan, Metall. Mater. Trans. B 30B(1), 29 (1999).

    Article  Google Scholar 

  27. L. Sun, J. Shi, Y. Zhe, and F. Jiang, Ceram. Int. 45(1), 481 (2018).

    Article  Google Scholar 

  28. L. Sun, and J. Shi, ISIJ Int. 59(7), 1184 (2019).

    Article  Google Scholar 

  29. E. Jak, A. Kondratiev, S. Christie, and P. Hayes, Metall. Mater. Trans. B 34(5), 595 (2003).

    Article  Google Scholar 

  30. J. Shi, L. Sun, B. Zhang, X. Liu, and J. Qiu, Metall. Mater. Trans. B 47(1), 425 (2016).

    Article  Google Scholar 

  31. X.B. Wan, J.J. Shi, Y.C. Qiu, M. Chen, J.Z. Li, C.S. Liu, P. Taskinen, and A. Jokilaakso, Ceram. Int. 47, 24802 (2021).

    Article  Google Scholar 

  32. I.H. Jung, and M. Ende, Metall. Mater. Trans. B 51(5), 1851 (2020).

    Article  Google Scholar 

  33. C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A. Pelton, and S. Petersen, Calphad 26, 189 (2002).

    Article  Google Scholar 

  34. N.Ö. Pekmez, M. Ugur, E. Karaca, Z. Ertekin, and K. Pekmez, Electrochim. Acta 376, 137996 (2021).

    Article  Google Scholar 

  35. P. Sun, X. Hu, G.F. Wei, R. Wang, Q. Wang, H.W. Wang, and X.F. Wang, Appl. Surf Sci. 548, 149269 (2021).

    Article  Google Scholar 

  36. M. Zhao, M. Song, and L. Fan, The Boundary Theory of Phase Diagrams and Its Application: Rules for Phase Diagram Construction with Phase Regions and Their Boundaries (Springer Verlag, 2015), p. 31.

  37. F. A. Hummel, Introduction to Phase Equilibria in Ceramic Systems, ed. M. Dekker (Boca Raton, Routledge, 2018), p. 1.

  38. M. Chen, X. Wan, J. Shi, P. Taskinen, and A. Jokilaakso, JOM 74, 2369. https://doi.org/10.1007/s11837-021-04870-0 (2021).

    Article  Google Scholar 

  39. A. Muan, Advanced Ceramics III, ed. S. Sōmiya (Pennsylvania, Springer, 1990), p. 25.

  40. C. Devries, R. Roy, and F. Osborn, J. Am Ceram Soc. 38(5), 158 (1955).

    Article  Google Scholar 

  41. X. Wan, J. Shi, L. Klemettinen, M. Chen, P. Taskinen, and A. Jokilaakso, J. All. Comp. 847, 156472 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This study received financial support from the China Postdoctoral Science Foundation (Grant numbers 2020TQ0059 and 2020M680967), the Natural Science Foundation of Liaoning Province (2021-MS-083), and the Fundamental Research Funds for the Central Universities (N2125010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Shi.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest, and the authors alone are responsible for the content and writing of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Qiu, Y., Wan, X. et al. Equilibrium Phase Relations of the CaO-SiO2-Ti3O5 System at 1400 °C and a p(O2) of 10−16 atm. JOM 74, 668–675 (2022). https://doi.org/10.1007/s11837-021-05049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05049-3

Navigation