Skip to main content
Log in

Investigation of Mechanical Properties of Parts Fabricated with Gas- and Water-Atomized 304L Stainless Steel Powder in the Laser Powder Bed Fusion Process

JOM Aims and scope Submit manuscript

Abstract

The use of gas-atomized powder as the feedstock material for the laser powder bed fusion (LPBF) process is common in the additive manufacturing (AM) community. Although gas-atomization produces powder with high sphericity, its relatively expensive production cost is a downside for application in AM processes. Water atomization of powder may overcome this limitation due to its low cost relative to the gas-atomization process. In this work, gas- and water-atomized 304L stainless steel powders were morphologically characterized through scanning electron microscopy (SEM). The water-atomized powder had a wider particle size distribution and exhibited less sphericity. Measuring powder flowability using the Revolution Powder Analyzer (RPA) indicated that the water-atomized powder had less flowability than the gas-atomized powder. Through examining the mechanical properties of LPBF fabricated parts using tensile tests, the gas-atomized powder had significantly higher yield tensile strength and elongation than the water-atomized powder; however, their ultimate tensile strengths were not significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. A. Mahdianikhotbesara, M.H. Sehhat, and M. Hadad, Metallogr. Microstruct. Anal. 10, 1 (2021).

    Article  Google Scholar 

  2. D. Rahmatabadi, M. Tayyebi, N. Najafizadeh, R. Hashemi, and M. Rajabi, Mater. Sci. Technol. 37, 1 (2021).

    Article  Google Scholar 

  3. N. Najafizadeh, M. Rajabi, R. Hashemi, and S. Amini, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. https://doi.org/10.1177/09544062211011509 (2021).

  4. N. Najafizadeh, M. Rajabi, R. Hashemi, and S. Amini, J. Theor. Appl. Vib. Acoust. 5(1), 1 (2019).

    Google Scholar 

  5. C.H. Hung, W.T. Chen, M.H. Sehhat, and M.C. Leu, Int. J. Adv. Manuf. Technol. 112, 1 (2020).

    Google Scholar 

  6. B. Behdani, M. Senter, L. Mason, M. Leu, and J. Park, J. Manuf. Mater. Process. 4(2), 46 (2020).

    Google Scholar 

  7. M. H. Sehhat, B. Behdani, C.-H. Hung, and A. Mahdianikhotbesara, Metallogr. Microstruct. Anal. https://doi.org/10.1007/s13632-021-00795-x (2021).

  8. P.D. Nezhadfar, S. Thompson, A. Saharan, N. Phan, and N. Shamsaei, Miner Metals Mater Ser 6, 212 (2021).

    Google Scholar 

  9. A.P. Jirandehi, M. Mehdizadeh, and M.M. Khonsari, Int. J. Mech. Sci. 176, 105525 (2020).

    Article  Google Scholar 

  10. M. Moghadasi, W. Du, M. Li, Z. Pei, and C. Ma, Ceram Int. 46(10), 16966 (2020).

    Article  Google Scholar 

  11. M.H. Sehhat, and A. Mahdianikhotbesara, Granul. Matter. 23, 1 (2021).

    Article  Google Scholar 

  12. A.P. Jirandehi, and M.M. Khonsari, Fatigue Fract. Eng. Mater. Struct. 13515 (2021).

  13. J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G. Zhou, and S.N. Schiffres, Addit. Manuf. 32, 100996 (2020).

    Google Scholar 

  14. J. Dawes, R. Bowerman, and R. Trepleton, Johns Matthey Technol Rev 59(3), 243 (2015).

    Article  Google Scholar 

  15. L.V.M. Antony, and R.G. Reddy, JOM 55(3), 14 (2003).

    Article  Google Scholar 

  16. M.Z. Gao, B. Ludwig, and T.A. Palmer, Powder Technol. 383, 30 (2021).

    Article  Google Scholar 

  17. M. Boisvert, D. Christopherson, P. Beaulieu, and G. L’Espérance, Mater. Des. 116, 644 (2017).

    Article  Google Scholar 

  18. S. Hoeges, A. Zwiren, and C. Schade, Met. Powder Rep. 72(2), 111 (2017).

    Article  Google Scholar 

  19. E. Olson, J. GXP Compliance 3(15), 85 (2011).

    Google Scholar 

  20. J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, and M.A. Peltz, J. Res. Natl. Inst. Stand. Technol. 119, 460 (2014).

    Article  Google Scholar 

  21. S.J. Blott, and K. Pye, Sedimentology 55(1), 31 (2008).

    Google Scholar 

  22. A.B. Spierings, M. Voegtlin, T. Bauer, and K. Wegener, Prog. Addit. Manuf. 1(1–2), 92016).

    Article  Google Scholar 

  23. ASTM Standard B417, Standard Test Method for Apparent Density of Non-Free-Flowing Metal Powders Using the Carney Funnel (ASTM International, West Conshohocken, 2018).

    Google Scholar 

  24. O. Macho, K. Demková, Ľ Gabrišová, M. Čierny, J. Mužíková, P. Galbavá, Ž Nižnanská, J. Blaško, P. Peciar, R. Fekete, and M. Peciar, Acta Polytech. 60(1), 732020).

    Article  Google Scholar 

  25. “REVOLUTION Powder Analyzer | Mercury Scientific Inc.” [Online]. Available: http://www.mercuryscientific.com/instruments/revolution-powder-analyzer.

  26. M. Soltaninejad, M. Soltaninejad, K.F. Saberi, M.K. Moshizi, V. Sadeghi, and P. Jahanbakhsh, Clean Technol. Environ Policy 2021(1), 1 (2021).

    Google Scholar 

  27. S. Karnati, J. Hoerchler, F. Liou, and J. Newkirk, Available: https://scholarsmine.mst.edu/mec_aereng_facwork/4381 (2017).

  28. Horiba Instrument Catalog, Horiba Instrum. Cat., 1, (2014).

  29. H. Chen, Q. Wei, Y. Zhang, F. Chen, Y. Shi, and W. Yan, Acta Mater. 179, 158 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Honeywell Federal Manufacturing & Technologies under Contract No. DE-NA0002839 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hossein Sehhat.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehhat, M.H., Sutton, A.T., Hung, CH. et al. Investigation of Mechanical Properties of Parts Fabricated with Gas- and Water-Atomized 304L Stainless Steel Powder in the Laser Powder Bed Fusion Process. JOM 74, 1088–1095 (2022). https://doi.org/10.1007/s11837-021-05029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05029-7

Navigation