Abstract
The use of gas-atomized powder as the feedstock material for the laser powder bed fusion (LPBF) process is common in the additive manufacturing (AM) community. Although gas-atomization produces powder with high sphericity, its relatively expensive production cost is a downside for application in AM processes. Water atomization of powder may overcome this limitation due to its low cost relative to the gas-atomization process. In this work, gas- and water-atomized 304L stainless steel powders were morphologically characterized through scanning electron microscopy (SEM). The water-atomized powder had a wider particle size distribution and exhibited less sphericity. Measuring powder flowability using the Revolution Powder Analyzer (RPA) indicated that the water-atomized powder had less flowability than the gas-atomized powder. Through examining the mechanical properties of LPBF fabricated parts using tensile tests, the gas-atomized powder had significantly higher yield tensile strength and elongation than the water-atomized powder; however, their ultimate tensile strengths were not significantly different.








References
A. Mahdianikhotbesara, M.H. Sehhat, and M. Hadad, Metallogr. Microstruct. Anal. 10, 1 (2021).
D. Rahmatabadi, M. Tayyebi, N. Najafizadeh, R. Hashemi, and M. Rajabi, Mater. Sci. Technol. 37, 1 (2021).
N. Najafizadeh, M. Rajabi, R. Hashemi, and S. Amini, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. https://doi.org/10.1177/09544062211011509 (2021).
N. Najafizadeh, M. Rajabi, R. Hashemi, and S. Amini, J. Theor. Appl. Vib. Acoust. 5(1), 1 (2019).
C.H. Hung, W.T. Chen, M.H. Sehhat, and M.C. Leu, Int. J. Adv. Manuf. Technol. 112, 1 (2020).
B. Behdani, M. Senter, L. Mason, M. Leu, and J. Park, J. Manuf. Mater. Process. 4(2), 46 (2020).
M. H. Sehhat, B. Behdani, C.-H. Hung, and A. Mahdianikhotbesara, Metallogr. Microstruct. Anal. https://doi.org/10.1007/s13632-021-00795-x (2021).
P.D. Nezhadfar, S. Thompson, A. Saharan, N. Phan, and N. Shamsaei, Miner Metals Mater Ser 6, 212 (2021).
A.P. Jirandehi, M. Mehdizadeh, and M.M. Khonsari, Int. J. Mech. Sci. 176, 105525 (2020).
M. Moghadasi, W. Du, M. Li, Z. Pei, and C. Ma, Ceram Int. 46(10), 16966 (2020).
M.H. Sehhat, and A. Mahdianikhotbesara, Granul. Matter. 23, 1 (2021).
A.P. Jirandehi, and M.M. Khonsari, Fatigue Fract. Eng. Mater. Struct. 13515 (2021).
J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G. Zhou, and S.N. Schiffres, Addit. Manuf. 32, 100996 (2020).
J. Dawes, R. Bowerman, and R. Trepleton, Johns Matthey Technol Rev 59(3), 243 (2015).
L.V.M. Antony, and R.G. Reddy, JOM 55(3), 14 (2003).
M.Z. Gao, B. Ludwig, and T.A. Palmer, Powder Technol. 383, 30 (2021).
M. Boisvert, D. Christopherson, P. Beaulieu, and G. L’Espérance, Mater. Des. 116, 644 (2017).
S. Hoeges, A. Zwiren, and C. Schade, Met. Powder Rep. 72(2), 111 (2017).
E. Olson, J. GXP Compliance 3(15), 85 (2011).
J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, and M.A. Peltz, J. Res. Natl. Inst. Stand. Technol. 119, 460 (2014).
S.J. Blott, and K. Pye, Sedimentology 55(1), 31 (2008).
A.B. Spierings, M. Voegtlin, T. Bauer, and K. Wegener, Prog. Addit. Manuf. 1(1–2), 92016).
ASTM Standard B417, Standard Test Method for Apparent Density of Non-Free-Flowing Metal Powders Using the Carney Funnel (ASTM International, West Conshohocken, 2018).
O. Macho, K. Demková, Ľ Gabrišová, M. Čierny, J. Mužíková, P. Galbavá, Ž Nižnanská, J. Blaško, P. Peciar, R. Fekete, and M. Peciar, Acta Polytech. 60(1), 732020).
“REVOLUTION Powder Analyzer | Mercury Scientific Inc.” [Online]. Available: http://www.mercuryscientific.com/instruments/revolution-powder-analyzer.
M. Soltaninejad, M. Soltaninejad, K.F. Saberi, M.K. Moshizi, V. Sadeghi, and P. Jahanbakhsh, Clean Technol. Environ Policy 2021(1), 1 (2021).
S. Karnati, J. Hoerchler, F. Liou, and J. Newkirk, Available: https://scholarsmine.mst.edu/mec_aereng_facwork/4381 (2017).
Horiba Instrument Catalog, Horiba Instrum. Cat., 1, (2014).
H. Chen, Q. Wei, Y. Zhang, F. Chen, Y. Shi, and W. Yan, Acta Mater. 179, 158 (2019).
Acknowledgements
This work was funded by Honeywell Federal Manufacturing & Technologies under Contract No. DE-NA0002839 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sehhat, M.H., Sutton, A.T., Hung, CH. et al. Investigation of Mechanical Properties of Parts Fabricated with Gas- and Water-Atomized 304L Stainless Steel Powder in the Laser Powder Bed Fusion Process. JOM 74, 1088–1095 (2022). https://doi.org/10.1007/s11837-021-05029-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-021-05029-7