Skip to main content
Log in

Experimental Investigation on Carbon Diffusion at the Solid–Liquid Interface During Scrap Melting in the Steelmaking Process

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Carbon diffusion at the solid–liquid interface is of fundamental importance in scrap melting. Herein, the scrap microstructure at the melt interface and the carbon and silicon distributions are described using optical microscopy and electron microprobe analysis (EPMA). The microstructural path from the surface to the interior of the scrap was primary carbide → acicular martensite → dislocation martensite (original structure). The corresponding carbon concentration gradient was > 4 wt.% → 1–1.5 wt.% → 0.2 wt.%. This was consistent with the observed microstructural changes. Furthermore, the depth of the carbon diffusion layer was 200 μm and 220 μm at 1300°C and 1350°C, respectively. The silicon-enriched layer may be a retarding factor for carbon dissolution. The area of the austenite phase region in the Fe-Fe3C phase diagram was reduced owing to the presence of silicon. Therefore, acicular martensite formed after water quenching decreased, which reduced the thickness of the carburized layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Oeters and R.M. Ni, in Metallurgy of Steelmaking (Metallurgical Industry Press, Beijing, 1997), pp. 479–481.

  2. F.M. Penz, and J. Schenk, Steel Res. Int. 90, 1. (2019).

    Article  Google Scholar 

  3. H. Gaye, M. Wanin, P. Gugliermina, and P. Schittly, in Proceeding of 68th Steelmaking Conference, Detroit, USA (1985).

  4. J.H. Li, Kinetics of steel scrap melting in liquid steel bath in an electric arc furnace (McMaster University, 2007).

  5. J. Szekely, Y.K. Chuang, and J.W. Hlinka, Metall. Mater. Trans. B 3, 2825. (1972).

    Article  Google Scholar 

  6. K. Isobe, H. Maede, K. Ozawa, K. Umezawa, and C. Saito, Tetsu-to-Hagane 76, 2033. (1990).

    Article  Google Scholar 

  7. R.D. Pehlke, P.D. Goodell, and R.W. Dunla, Trans. Metall. Soc. AIME 233, 1420. (1964).

    Google Scholar 

  8. H. Sun, Y. Liu, and C. Lin, International Congress on the Science & Technology of Steelmaking (Beijing International Convention Center, Beijing, 2015), pp 136–139.

    Google Scholar 

  9. A.K. Shukla, B. Deo, and D.G.C. Robertson, Metall. Mater. Trans. B 44, 1407. (2013).

    Article  Google Scholar 

  10. J.K. Wright, Metall. Mater. Trans. B 20, 363. (1989).

    Article  Google Scholar 

  11. W.Y. Yang, Iron Steel 52, 27. (2017).

    Google Scholar 

  12. W.Y. Yang, X.G. Zhang, and Y. Yang, Iron Steel Scrap China 22, 1. (2012).

    Google Scholar 

  13. Y.U. Kim, and R. Pehlke, Metall. Mater. Trans. A 5, 2527. (1974).

    Article  Google Scholar 

  14. M. Kosaka, and S. Minowa, Tetsu-to-Hagane 53, 983. (1967).

    Article  Google Scholar 

  15. K. Mineo, and M. Susumu, Tetsu-to-Hagane 52, 537. (1966).

    Google Scholar 

  16. K. Mineo, and M. Susumu, Tetsu-to-Hagane 53, 1467. (2010).

    Google Scholar 

  17. F. Penz, J. Schenk, and R. Ammer, Materials 12, 1. (2019).

    Article  Google Scholar 

  18. G. Wei, R. Zhu, T. Tang, and K. Dong, Ironmak. Steelmak. 46, 609. (2019).

    Article  Google Scholar 

  19. C. Liu, H. Zhang, Q. Fang, X. Liu, and H. Ni, Metall. Mater. Trans. B 51, 1668. (2020).

    Article  Google Scholar 

  20. M. Gao, S.F. Yang, and Y.L. Zhang, Ironmak. Steelmak. 47, 1006. (2020).

    Article  Google Scholar 

  21. M. Gao, J.T. Gao, Y.L. Zhang, and S.F. Yang, Int. J. Miner. Metall. Mater. 28, 380. (2021).

    Article  Google Scholar 

  22. Z. Cui and Y. Tan, Metal Science and Heat Treatment (Harbin Institute of Technology Process, 2004), pp. 225–228.

  23. X. Wang, Metallic Materials (China Machine Press, Beijing, 1989), pp. 23–25.

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (no. 2019YFC1905701) and the Key Projects of NSFC (U1960201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ling Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 192 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Gao, J.T., Zhang, Y.L. et al. Experimental Investigation on Carbon Diffusion at the Solid–Liquid Interface During Scrap Melting in the Steelmaking Process. JOM 74, 293–301 (2022). https://doi.org/10.1007/s11837-021-05022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05022-0

Navigation