Skip to main content
Log in

Enhanced Collection Efficiency of Photoelectrons of Negative Electron Affinity AlGaN Heterojunction Nanorod Array Photocathodes

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

With the increasing demand for ultraviolet detectors, improving their photoelectric conversion capacity has become an interesting research topic. A theoretical model for the photoemission of field-assisted AlGaN heterojunction nanorod array photocathodes is established, which is favorable for alleviating the phenomenon of photoelectrons absorbed by adjacent nanorods. Illuminated by oblique incident light and assisted by 0.5 V/µm electric field, a maximum improvement of 42.3% in the electron collection efficiency can be implemented. The model discussed in this article can provide some theoretical references for the design and manufacture of high-efficiency solar-blind ultraviolet detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C.G. Stergis, Proc. SPIE 0687, 2. (1986).

    Article  Google Scholar 

  2. C.W. Litton, P.J. Schreiber, G.A. Smith, T. Dang, and H. Morkoc, Proc. SPIE 4454, 218. (2001).

    Article  Google Scholar 

  3. C.L. Joseph, Proc. SPIE 2999, 244. (1997).

    Article  Google Scholar 

  4. C.H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E.-N. Ooi, T.K. Ng, O.F. Mohammed, O.M. Bakr, and B.S. Ooi, Light Sci. Appl. 8, 94. (2019).

    Article  Google Scholar 

  5. G. Jiang, D. Zhao, and Bo. Zhao, Microelectron INT 35, 18. (2018).

    Article  Google Scholar 

  6. Z. Huang, W. Weng, S. Chang, C. Chiu, T. Hsueh, and Wu. Sanlein, IEEE SENS J 13, 3462. (2013).

    Article  Google Scholar 

  7. S. Kim, and J. Kim, Appl. Phys. Lett. 117, 261101. (2020).

    Article  Google Scholar 

  8. Y. Zheng, Y. Li, X. Tang, W. Wang, and G. Li, Adv. Opt. Mater. 8, 2000197. (2020).

    Article  Google Scholar 

  9. H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett. 71, 1504. (1997).

    Article  Google Scholar 

  10. S.K. Pugh, D.J. Dugdale, S. Brand, and R.A. Abram, J. Appl. Phys. 86, 3768. (1999).

    Article  Google Scholar 

  11. O. Katz, B. Meyler, U. Tisch, and J. Salzman, Phys. Stat. Sol. 188, 789. (2001).

    Article  Google Scholar 

  12. E.J. Tarsa, P. Kozodoy, J. Ibbetson, B.P. Keller, G. Parish, and U. Mishra, Appl. Phys. Lett. 77, 316. (2000).

    Article  Google Scholar 

  13. E. Cicek, Z. Vashaei, E.K.-w Huang, R. McClintock, and M. Razeghi, Opt. Lett. 37, 896. (2012).

    Article  Google Scholar 

  14. S.V. Averine, P.I. Kuznetzov, V.A. Zhitov, and N.V. Alkeev, Solid State Electron 52, 618. (2008).

    Article  Google Scholar 

  15. R. McClintock, P. Sandvik, K. Mi, F. Shahedipour, A. Yasan, C. Jelen, P. Kung, and M. Razeghi, Proc. SPIE. 4288, 219. (2001).

    Article  Google Scholar 

  16. D. Wang, C. Huang, X. Liu, H. Zhang, Yu. Huabin, S. Fang, B.S. Ooi, Z. Mi, J.-H. He, and H. Sun, Adv. Opt. Mater. 9, 2000893. (2021).

    Article  Google Scholar 

  17. Y. Chen, Z. Zhang, G. Miao, H. Jiang, Z. Li, and H. Song, Mater. Lett. 281, 128638. (2020).

    Article  Google Scholar 

  18. X. Zhangyang, L. Liu, Z. Lv, F. Lu, and J. Tian, Opt. Mater. 101, 109747. (2020).

    Article  Google Scholar 

  19. X. Zhangyang, L. Liu, Z. Lv, F. Lu, and J. Tian, Mater. Res. Express 7, 015099. (2020).

    Article  Google Scholar 

  20. Lu. Hu, and C. Gang, Nano Lett. 7, 3249. (2007).

    Article  Google Scholar 

  21. F. Lu, L. Liu, and J. Tian, Appl. Surf. Sci. 497, 143791. (2019).

    Article  Google Scholar 

  22. L. Liu, F. Lu, and J. Tian, Appl. Surf. Sci. 508, 145250. (2020).

    Article  Google Scholar 

  23. W.E. Spicer, Phys. Rev. A 112, 114. (1958).

    Article  Google Scholar 

  24. W.E. Spicer, and A. Herrera-Gomez, Proc. SPIE 2022, 18. (1993).

    Article  Google Scholar 

  25. J. Zou, X. Ge, Y. Zhang, W. Deng, Z. Zhu, W. Wang, X. Peng, Z. Chen, and B. Chang, Opt. Express 24, 4632. (2016).

    Article  Google Scholar 

  26. J. Zou, W. Zhao, X. Ding, Z. Zhu, W. Deng, and W. Wang, Appl. Phys. A-Mater. 122, 1003. (2016).

    Article  Google Scholar 

  27. X. Peng, Z. Wang, Y. Liu, D.M. Manos, M. Poelker, M. Stutzman, B. Tang, S. Zhang, and J. Zou, Phys. Rev. Appl. 12, 064002. (2019).

    Article  Google Scholar 

  28. L. Liu, X. Zhangyang, Z. Lv, F. Lu, and J. Tian, Appl. Surf. Sci. 544, 148866. (2021).

    Article  Google Scholar 

  29. B.D. Liu, Y. Bando, C.C. Tang, F.F. Xu, and D. Golberg, J. Phys. Chem. B 109, 21521. (2005).

    Article  Google Scholar 

  30. C.-C. Tang, X.-W. Xu, L. Hu, and Y.-X. Li, Appl. Phys. Lett. 94, 243105. (2009).

    Article  Google Scholar 

  31. J. Li, T.N. Oder, M.L. Nakarmi, J.Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 80, 1210. (2002).

    Article  Google Scholar 

  32. Y. Koide, H. Itoh, M.R.H. Khan, K. Hiramatu, N. Sawaki, and I. Akasaki, J. Appl. Phys. 61, 4540. (1987).

    Article  Google Scholar 

  33. P. Reddy, I. Bryan, Z. Bryan, Z. Bryan, J. Tweedie, S. Washiyama, R. Kiste, S. Mita, R. Collazo, and L. Sitar, Appl. Phys. Lett. 107, 091603. (2015).

    Article  Google Scholar 

  34. J.W. Cooper, Phys. Rev. A 42, 6942. (1990).

    Article  Google Scholar 

  35. K.A. Hanold, M.C. Garner, and R.E. Continetti, Phys. Rev. Lett. 77, 3335. (1996).

    Article  Google Scholar 

  36. L. Liu, F. Lu, and J. Tian, J. Lumin. 235, 118036. (2021).

    Article  Google Scholar 

  37. J. Whale, A.V. Akimov, S.V. Novikov, C.J. Mellor, and A.J. Kent, Phys. Rev. Mater. 2, 034606. (2018).

    Article  Google Scholar 

  38. Y. Liu, Q.X. Li, L.Y. Wan, B. Kucukgok, E. Ghafari, I.T. Ferguson, X. Zhang, S. Wang, Z.C. Feng, and N. Lu, Appl. Surf. Sci. 421, 389. (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Jiangsu Province-China (Grant No. BK20211193), Qing Lan Project of Jiangsu Province-China (Grant No. 2017-AD41779) and the Six Talent Peaks Project in Jiangsu Province-China (Grant No. 2015-XCL-008). Qinghua Lv of Hubei University of Technology is greatly appreciated for the help with COMSOL Multiphysics Business Package calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests in either personal or financial aspects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhangyang, X., Liu, L., Lv, Z. et al. Enhanced Collection Efficiency of Photoelectrons of Negative Electron Affinity AlGaN Heterojunction Nanorod Array Photocathodes. JOM 74, 53–62 (2022). https://doi.org/10.1007/s11837-021-05017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05017-x

Navigation