Skip to main content
Log in

Role of D2EHPA in Ion Flotation of Neodymium for Achieving a High Selectivity over Base Metal Impurities

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Selective ion flotation of neodymium ions from aluminum, iron, and calcium ions using sodium dodecyl sulfate (SDS) as a surfactant and di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant was performed to selectively recover neodymium ions from solutions in a binary system of ions. The results indicated that the D2EHPA caused an increase in the neodymium ion recovery in the presence of all competing ions. Using D2EHPA, the calcium ion removal decreased and the removal of iron and aluminum ions increased. The Gibbs free energy of neodymium-D2EHPA complex formation was more than that of other ions, which led to an increase in the selective recovery of neodymium ions. The aluminum ions had a greater effect on decreasing the neodymium recovery than iron or calcium ions. Similar Gibbs free energy and complex structures of the neodymium and aluminum ions with D2EHPA led to the less selective separation of neodymium from aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Taseidifar, M. Ziaee, R.M. Pashley, and B.W. Ninham, J. Environ. Chem. Eng. 7, 103263 (2019).

    Article  Google Scholar 

  2. M.H. Asan Ehrampoush, M.T. Ghanaian, and H. Mohammad, World Appl. Sci. J. 13, 52 (2011).

    Google Scholar 

  3. S. Ilyas, R.R. Srivastava, and H. Kim, J. Hazard. Mater. 416, 125769 (2021).

    Article  Google Scholar 

  4. M. Jun, R.R. Srivastava, J. Jeong, J.C. Lee, and M.S. Kim, Green Chem. 18, 3823 (2016).

    Article  Google Scholar 

  5. M. Rahman and G. Slemon, IEEE Trans. Magn. 21, 1712 (1985).

    Article  Google Scholar 

  6. E. Ciro, A. Alzate, E. López, C. Serna, and O. Gonzalez, Hydrometallurgy 186, 234 (2019).

    Article  Google Scholar 

  7. H. Patil, D. Sawant, D. Bhavsar, J. Patil, and K. Girase, J. Therm. Anal. Calorim. 107, 1031 (2012).

    Article  Google Scholar 

  8. B. Sprecher, R. Kleijn, and G.J. Kramer, Environ. Sci. Technol. 48, 9506 (2014).

    Article  Google Scholar 

  9. F.S. Hoseinian, B. Rezai, E. Kowsari, and M. Safari, Miner. Eng. 119, 212 (2018).

    Article  Google Scholar 

  10. F.S. Hoseinian, B. Rezai, M. Safari, D. Deglon, and E. Kowsari, J. Environ. Manage. 244, 408 (2019).

    Article  Google Scholar 

  11. D. Chirkst, O. Lobacheva, and N. Dzhevaga, Russ. J. Appl. Chem. 84, 1476 (2011).

    Article  Google Scholar 

  12. G.Z. Kyzas and K.A. Matis, Processes. 6, 116 (2018).

    Article  Google Scholar 

  13. C. Micheau, O. Diat, and P. Bauduin, J. Mol. Liq. 253, 217 (2018).

    Article  Google Scholar 

  14. W. Peng, L. Chang, P. Li, G. Han, Y. Huang, and Y. Cao, J. Mol. Liq. 286, 110955 (2019).

    Article  Google Scholar 

  15. D. Chirkst, O. Lobacheva, I. Berlinskii, and M. Sulimova, Russ. J. Appl. Chem. 82, 1370 (2009).

    Article  Google Scholar 

  16. F. Hoseinian, B. Rezai, and E. Kowsari, Int. J. Environ. Sci. Technol. 16, 4915 (2019).

    Article  Google Scholar 

  17. R.C. Huang and F.D. Talbot, Can. J. Chem. Eng. 51, 709 (1973).

    Article  Google Scholar 

  18. F.M. Doyle, Int. J. Miner. Process. 72, 387 (2003).

    Article  Google Scholar 

  19. Z. Liu and F.M. Doyle, Langmuir 25, 8927 (2009).

    Article  Google Scholar 

  20. F.S. Hoseinian, B. Rezai, and E. Kowsari, J. Environ. Manage. 207, 169 (2018).

    Article  Google Scholar 

  21. F.S. Hoseinian, B. Rezai, and E. Kowsari, Sep. Sci. Technol. 54, 2528 (2019).

    Article  Google Scholar 

  22. F.S. Hoseinian, B. Rezai, E. Kowsari, A. Chinnappan, and S. Ramakrishna, Sep. Purif. Technol. 240, 116639 (2020).

    Article  Google Scholar 

  23. K. Galvin, S. Nicol, and A. Waters, Colloids Surf. 64, 21 (1992).

    Article  Google Scholar 

  24. M. Doğutan Yenidünya, Sep. Sci. Technol. 41, 1741 (2006).

    Article  Google Scholar 

  25. O. Lobacheva, D. Chirkst, N. Dzhevaga, and V.Y. Bazhin, Russ. J. Appl. Chem. 86, 1862 (2013).

    Article  Google Scholar 

  26. F.M. Doyle and Z. Liu, J. Colloid Interface Sci. 258, 396 (2003).

    Article  Google Scholar 

  27. M. Zakeri Khatir, M. Abdollahy, M.R. Khalesi, and B. Rezai, Sep. Sci. Technol. 1, 1802 (2020).

    Google Scholar 

  28. F.S. Hoseinian, B. Rezai, M. Safari, D. Deglon, and E. Kowsari, Hydrometallurgy 202, 105609 (2021).

    Article  Google Scholar 

  29. C. Micheau, A. Schneider, L. Girard, and P. Bauduin, Colloids Surf. A. 470, 52 (2015).

    Article  Google Scholar 

  30. J. Jorné and E. Rubin, Sep. Sci. Technol. 4, 313 (1969).

    Google Scholar 

  31. M. Mohammadi, K. Forsberg, L. Kloo, J.M. De La Cruz, and Å. Rasmuson, Hydrometallurgy 156, 215 (2015).

    Article  Google Scholar 

  32. Y. Shaohua, et al., J. Rare Earths. 28, 111 (2010).

    Article  Google Scholar 

  33. P. Liang, W. Liming, and Y. Guoqiang, J. Rare Earths. 30, 63 (2012).

    Article  Google Scholar 

  34. A. Kumari, R. Panda, J.Y. Lee, T. Thriveni, M.K. Jha, and D.D. Pathak, Sep. Purif. Technol. 227, 115680 (2019).

    Article  Google Scholar 

  35. V.C.A. Ruiz, R. Kuchi, P.K. Parhi, J.Y. Lee, and R.K. Jyothi, Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  36. S. Roy, S. Basu, M. Anitha, and D.K. Singh, Korean J. Chem. Eng. 34, 1740 (2017).

    Article  Google Scholar 

  37. S. Duhan, P. Aghamkar, and M. Singh, Phys. Res. Int. 2008, 4 (2008).

    Google Scholar 

  38. F.S. Hoseinian, B. Rezai, E. Kowsari, and M. Safari, Physicochem. Probl. Miner. Process. 56, 919 (2020).

    Article  Google Scholar 

  39. S.H. Yin, S.W. Li, F. Xie, L.B. Zhang, and J.H. Peng, RSC Adv. 5, 64550 (2015).

    Article  Google Scholar 

  40. J.W. Ochterski, Thermochemistry in Gaussian, Gaussian Inc, (2000), pp. 1–19.

  41. M. Frisch et al., Gaussian 09, Revision d. 01, Gaussian, Inc., Wallingford CT, (USA, 2009).

  42. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  43. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B. 37, 785 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Abdollahy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatir, M.Z., Abdollahy, M., Khalesi, M.R. et al. Role of D2EHPA in Ion Flotation of Neodymium for Achieving a High Selectivity over Base Metal Impurities. JOM 74, 240–248 (2022). https://doi.org/10.1007/s11837-021-05016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05016-y

Navigation