Skip to main content
Log in

Microwave Pyrolysis Pretreatment of High Arsenic Refractory Gold Sulfide Concentrates in Nitrogen Atmosphere: Process Optimization and Mechanism Study

  • New and Novel Laboratory and Pilot Techniques for Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The process optimization and mechanism of microwave pyrolysis in a nitrogen atmosphere were studied to improve the gold leaching rate for high-arsenic-refractory gold sulfide resources, mainly containing minerals of elemental sulfur, dense pyrite, and arsenopyrite. The decomposability was evaluated using thermodynamic and thermogravimetric analyses. Faster microwave heating characteristics were confirmed under a nitrogen atmosphere. The main factors affecting microwave pyrolysis were pyrolysis temperature, time, and protective nitrogen temperature. The optimum conditions for the four variables were determined to remove 97.96% of As and 50.43% of S. The arsenopyrite first formed pyrite through a shrinking nuclear process in the presence of sulfur. The decomposition of pyrite and pyrrhotite is random. Many pores and cracks are formed to expose the locked gold for leaching. The gold leaching rate reached 95.36% with sodium cyanide and a small amount of lead nitrate; this rate was much higher than that observed before pretreatment (38.65%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.T. Konadu, R.J. Huddy, S. Harrison, K. Osseo-Asare, and K. Sasaki, Miner. Eng. 138, 86. (2019).

    Article  Google Scholar 

  2. X. Guo, Y. Xin, H. Wang, and Q. Tian, Trans. Nonferrous Met. Soc. China 27, 1888. (2017).

    Article  Google Scholar 

  3. T. Chen, L.J. Cabri, and J.E. Dutrizac, JOM 54, 20. (2002).

    Article  Google Scholar 

  4. J.P. Vaughan, JOM 56, 46. (2004).

  5. J. Jin, Y. Han, H. Li, Y. Huai, Y. Peng, X. Gu, and W. Yang, Chin. J. Chem. Eng. 27, 1184. (2019).

    Article  Google Scholar 

  6. K.A. Richmond, S. William, and A.M. Jonas, Hydrometallurgy 179, 79. (2018).

    Article  Google Scholar 

  7. H. Abdollahi, P. Karimi, A. Amini, and A. Akcil, Miner. Metall. Proc. 32, 161. (2015).

    Google Scholar 

  8. I.J. Corrans, and J.E. Angove, Miner. Eng. 4, 763. (1991).

    Article  Google Scholar 

  9. S. Ruan, C. Wang, X. Jie, F. Yin, Y. Zhang, Z. Yao, and Y. Chen, J. Therm. Anal. Calorim. (2021).

  10. M.N. Lehmann, S.O. Leary, and J.G. Dunn, Miner. Eng. 13, 1. (2000).

    Article  Google Scholar 

  11. K.S. Pak, T. Zhang, C.S. Kim, and G.H. Kim, Hydrometallurgy 194,105325 (2020).

  12. N. Marchevsky, M.M.B. Quitoga, A. Giaveno, and E. Donati, Trans. Nonferrous Met. Soc. China 27, 1143. (2017).

    Article  Google Scholar 

  13. N.V. Fomchenko, M.I. Muravyov, and T.F. Kondrat’eva, Hydrometallurgy 101, 28. (2010).

    Article  Google Scholar 

  14. E. Jorjani, and A. Ghahreman, Hydrometallurgy 171, 333. (2017).

    Article  Google Scholar 

  15. A.D. Bas, E. Ghali, and Y. Choi, Hydrometallurgy 172, 30. (2017).

    Article  Google Scholar 

  16. Q. Wang, X. Hu, F. Zi, X. Qin, Y. Nie, and Y. Zhang, Miner Eng. 136, 89. (2019).

    Article  Google Scholar 

  17. S.L.M. Espitia, and G.T. Lapidus, Hydrometallurgy 153, 106. (2015).

    Article  Google Scholar 

  18. H. Qin, X. Guo, Q. Tian, D. Yu,and L. Zhang, Miner. Eng. 164,106822 (2021).

  19. X. Liu, Q. Li, Y. Zhang, T. Jiang, Y. Yang, B. Xu, and Y. He, Metall. Mater. Trans. B 50, 1588. (2019).

    Article  Google Scholar 

  20. R.K. Amankwah, and C.A. Pickles, Miner. Eng. 22, 1095. (2009).

    Article  Google Scholar 

  21. H. Zhang, Safety Technology Complete Book of Hazardous Chemicals, 2nd ed. ((Beijing, NY: Chemical Industry Press, 2008), pp. 450.

  22. J.G. Dunn, A.S. Ibrado, and J. Graham, Miner. Eng. 8, 459. (1995).

    Article  Google Scholar 

  23. W. Xu, P. Jin, S. Xu, S. Zhang, and X. Wu, Central South Pharmacy 17, 899. (2019).

    Google Scholar 

  24. G. Zhou, Q. Huang, B. Yu, H. Tong, Y. Chi, and J. Yan, Chin. J. Chem. Eng. 26, 1171. (2018).

    Article  Google Scholar 

  25. S.S. Rath, N. Dhawan, D.S. Rao, B. Das, and B.K. Mishra, Powder Technol. 301, 1016. (2016).

    Article  Google Scholar 

  26. K.E. Haque, Int. J. Miner. Proc. 57, 1. (1999).

    Article  Google Scholar 

  27. Z. Xu, H. Shao, Q. Zhao, and Z. Liang, JOM 73, 2104. (2021).

    Article  Google Scholar 

  28. P. Zhao, C. Liu, C. Srinivasakannan, L. Zhang, F. Wang, and J. Gao, Powder Technol. 379, 630. (2021).

    Article  Google Scholar 

  29. Y. Liu, W. Yao, C. Lei, Q. Zhang, S. Zhong, and Z. Yan, J. Electrochem. Soc. 166, A1300. (2019).

    Article  Google Scholar 

  30. Y. Liu, J. Zhang, X. Yang, W. Yang, Y. Chen, and C. Wang, Chinese. J. Chem. Eng. (2020).

  31. C.A. Pickles, Miner. Eng. 22, 1112. (2009).

    Article  Google Scholar 

  32. R.K. Amankwah, and G. O. Sarpong, Miner. Eng. 151, 106312, (2020).

  33. R.K. Amankwah, and G.O. Sarpong, Miner. Eng. 24, 541. (2011).

    Article  Google Scholar 

  34. X. Zhang, C. Sun, Y. Xing, J. Kou, and M. Su, Hydrometallurgy 180, 210. (2018).

    Article  Google Scholar 

  35. X. Zhang, J. Kou, and C. Sun, J. Anal. Appl. Pyrol. 138, 41. (2019).

    Article  Google Scholar 

  36. R. K. Amankwah, and G. Ofori-Sarpong, Miner. Eng. 151,106312 (2020).

  37. S. Ma, W. Luo, W. Mo, X. Su, P. Liu, and J. Yang, Miner. Eng. 23, 61. (2010).

    Article  Google Scholar 

  38. X. Zhang, J. Kou, and C. Sun, J. Anal. Appl. Pyrolysis. 138, 41. (2019).

    Article  Google Scholar 

  39. S. Zhang, Y. Li, R. Wang, Z. Xu, B. Wang, S. Chen, and M. Chen, J. Clean. Prod. 152, 1. (2017).

    Article  Google Scholar 

  40. Y. Zhang, C. Wang, B. Ma, X. Jie, and P. Xing, Hydrometallurgy 186, 284. (2019).

    Article  Google Scholar 

  41. F. Soltani, M. Marzban, H. Darabi, M. Aazami, and M.H. Chegeni, JOM 72, 774. (2020).

    Article  Google Scholar 

  42. S. Ruan, P. Xing, C. Wang, Y. Chen, F. Yin, X. Jie, B. Ma, and Y. Zhang, Thermochim. Acta 690, 178666 (2020).

  43. G. Hu, K.D. Johansen, S. Wedel, and J.P. Hansen, Prog. Energy. Combust. Sci. 32, 295. (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51604030), National Key R&D Program of China (Nos. 2019YFC1908301, 2018YFC1900303, and 2019YFC1908305), and the Research Fund of the BGRIMM Group (No. 02-1915).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufeng Ruan, Chengyan Wang or Yongqiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 378 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, S., Qiu, D., Wang, C. et al. Microwave Pyrolysis Pretreatment of High Arsenic Refractory Gold Sulfide Concentrates in Nitrogen Atmosphere: Process Optimization and Mechanism Study. JOM 74, 167–177 (2022). https://doi.org/10.1007/s11837-021-05000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05000-6

Navigation