Skip to main content
Log in

Effect of NaCN:ZnSO4 Mixture Molar Ratio and Particle-Size Distribution on Pb-Zn and Fe Selective Separation by Froth Flotation

  • 4IR in Extractive Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work studies the depression of sphalerite and pyrite with a NaCN:ZnSO4 mixture in the selective separation of Pb-Zn by flotation when the blend is enriched with Ag. Given in this paper are an explanation of depression mechanism and the method for optimizing the Pb-Ag recovery. This was done by analyzing the thermodynamics of an aqueous system and evaluating two experimental techniques: flotation kinetic tests and wettability on minerals. The best Pb-Zn separation was observed using a 10:1 mixture molar ratio and coarse-size-particle distribution in the flotation kinetic test (separation 48.24% and lead recovery 83.70%). Wettability measurements and thermodynamic analysis support that free cyanide [CN] and zinc cyanide species [Zn(CN)3 and Zn(CN)42−] selectively depressed the pyrite and sphalerite, favoring galena floatability. Finally, the silver recovery (argentite associated with pyrite and quartz) is affected by mineralogical association and both, particle-size distribution and mixture molar ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Yin, and Y. Tang, Int. J. Miner. Metall. Mater. 27, 571. (2020).

    Article  Google Scholar 

  2. S. Bulatovic, and D.M. Wyslouzil, Miner. Eng. 8, 63. (1995).

    Article  Google Scholar 

  3. J. Ralston, Miner. Eng. 5/6, 715. (1994).

    Article  Google Scholar 

  4. L. Zhang, J. Gao, S.A. Khoso, L. Wang, Y. Liu, P. Ge, M. Tian, and W. Sun, Miner. Eng. 167, 106885. (2021).

    Article  Google Scholar 

  5. K. Zhao, C. Ma, G. Gu, and Z. Gao, Minerals 11–796, 1. (2021).

    Google Scholar 

  6. J. Liu, Y. Wang, D. Luo, and Y. Zeng, Miner. Eng. 121, 31. (2018).

    Article  Google Scholar 

  7. H. Wang, S. Wen, G. Han, L. Xu, and Q. Feng, Miner. Eng. 146, 106132. (2020).

    Article  Google Scholar 

  8. T. Xin, Z. Yangge, S. Chuanyao, Z. Xingrong, and S. Jianfang, Miner. Eng. 157, 106542. (2020).

    Article  Google Scholar 

  9. M.C. Fuerstenau, M.C. Kuhn, and D.A. Elgillani, Trans. Am. Inst. Min. Metall. Petrol. Eng. 241, 148. (1968).

    Google Scholar 

  10. X.H. Wang, and K.S.E. Forssberg, Miner. Eng. 9(5), 527. (1996).

    Article  Google Scholar 

  11. J.R.D. Wet, P.C. Pistorius, and R.F. Sandenbergh, Int. J. Miner. Process. 49(3–4), 149. (1997).

    Article  Google Scholar 

  12. M.D. Sake, and P.C. Pistorius, Miner. Eng. 19(1), 1. (2006).

    Article  Google Scholar 

  13. S. Song, A. Lopez-Valdivieso, J.L. Reyes-Bahena, and C. Lara-Valenzuela, Miner. Eng. 14, 87. (2001).

    Article  Google Scholar 

  14. K. L. Sutherland and I. Wark, Principles of Flotation (Melbourne: Australian Institute of Mining and Metallurgy, 1955), pp. 113–149.

  15. K. Osathaphan, T. Boonpitak, T. Laopirojana, and V.K. Sharma, Water Air Soil Pollut. 194(1–4), 179. (2008).

    Article  Google Scholar 

  16. R.A. Penneman, and L.H. Jones, J. Inorgan. Nucl. Chem. 20, 19. (1961).

    Article  Google Scholar 

  17. S.R. Rao, J.E. Nesset, and J.A. Finch, Miner. Eng. 24(9), 1025. (2011).

    Article  Google Scholar 

  18. A.R. Gerson, A.G. Lange, K.E. Prince, and R.S.C. Smart, Appl. Surf. Sci. 127(1–4), 207. (1999).

    Article  Google Scholar 

  19. S.R. Popov, and D.R. Vucinic, Int. J. Miner. Process. 30(3–4), 229. (1990).

    Article  Google Scholar 

  20. H.M. Steele, K. Wright, and I.H. Hillier, Phys. Chem. Miner. 30, 69. (2003).

    Article  Google Scholar 

  21. J. Ralston, and T.W. Healy, Int. J. Miner. Process. 7(3), 203. (1980).

    Article  Google Scholar 

  22. B. Guo, Y. Peng, and R. Espinosa-Gomez, Miner. Eng. 66–68, 25. (2014).

    Article  Google Scholar 

  23. K.L. Rees, and J.S.J. van Deventer, Miner. Eng. 12(8), 877. (1999).

    Article  Google Scholar 

  24. G.J. Sparrow, and J.T. Woodcock, Miner. Process. Extr. Metall. Rev. 14(3–4), 193. (1995).

    Article  Google Scholar 

  25. X. Yin, A. Opara, H. Du, and J.D. Miller, Hydrometallurgy 106(1–2), 64. (2011).

    Article  Google Scholar 

  26. B. Guo, Y. Peng, and Y. Mai, Miner. Eng. 85, 106. (2016).

    Article  Google Scholar 

  27. R. Arellano-Piña, J.A. Delgadillo, and R. Pérez-Garibay, Miner. Eng. 114, 8. (2017).

    Article  Google Scholar 

  28. I. Huber-Panu, E. Ene-Danalache, and D.G. Cojocariu, Mathematical models of batch and continuous flotation, in Flotation-A.M. Gaudin Memorial (New York: AIME, 1976), p. 675.

  29. R.R. Klimpel, Selection of Chemical Reagents for Flotation, ed. R.S. A.L. Mular and R.B. Bhappu (New York: SME-AIME, 1980), pp. 907–935.

  30. L. Vinnett, M. Alvarez-Silva, A. Jaques, F. Hinojosa, and J. Yianatos, Miner. Eng. 77, 167. (2015).

    Article  Google Scholar 

  31. Z. Tong, L. Liu, Z. Yuan, J. Liu, J. Lu, and L. Li, Miner. Eng. 169, 106959. (2021).

    Article  Google Scholar 

  32. R. Hartmann, and R. Serna-Guerrero, Miner. Eng. 149, 106240. (2020).

    Article  Google Scholar 

  33. C.A. Prestidge, J. Ralston, and R.S.C. Smart, Colloids Surf. A 81, 103. (1993).

    Article  Google Scholar 

  34. S. Grano, J. Ralston, and R.S.C. Smart, Int. J. Miner. Process. 30, 69. (1990).

    Article  Google Scholar 

  35. C.A. Prestidge, W.M. Skinner, J. Ralston, and R.S.C. Smart, Appl. Surf. Sci. 108, 333. (1997).

    Article  Google Scholar 

  36. L. Wang, Y. Peng, and K. Runge, Miner. Eng. 100, 124. (2017).

    Article  Google Scholar 

  37. P. George, A.V. Nguyen, and G.J. Jameson, Miner. Eng. 17(7–8), 847. (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Polytechnic Institute (UPIIZ–IPN) projects SIP–IPN 20210910 and 20210337, CINVESTAV–IPN Saltillo, and CLUSMIN Zacatecas, for all the facilities provided for the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pérez-Garibay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arellano-Piña, R., Sanchez-Ramirez, E.A., Pérez-Garibay, R. et al. Effect of NaCN:ZnSO4 Mixture Molar Ratio and Particle-Size Distribution on Pb-Zn and Fe Selective Separation by Froth Flotation. JOM 74, 36–46 (2022). https://doi.org/10.1007/s11837-021-04998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04998-z

Navigation