Skip to main content
Log in

Double Functionalization for the Design of Innovative Craniofacial Prostheses

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium (Ti) is the most commonly used material for cranial prostheses. However, this material does not exhibit the same mechanical properties as the bone. Incorporating polymers onto Ti by combining both their properties is a solution to overcome this issue. Thus, sandwich materials made of two Ti skin sheets and a poly(methyl methacrylate) (PMMA) core are promising structures to design biomedical prostheses. The “grafting to” and “grafting from” procedures to functionalize the Ti/PMMA interface are described in this article as two strategies for chemically connecting PMMA chains on Ti surfaces. The advantage of the first approach is the capacity to control the architecture of the grafted PMMA on Ti. Moreover, a method for selectively grafting a bioactive polymer such as poly(sodium styrene sulfonate) (PNaSS) on one side of the Ti and PMMA on the other side is developed. This contribution presents efficient ways of functionalizing Ti for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.C. Origitano, R. Izquierdo, and L.B. Scannicchio, Skull Base 5, 109. (1995).

    Article  Google Scholar 

  2. Y. Ducic, J. Oral Maxillofac. Surg. 60, 272. (2002).

    Article  Google Scholar 

  3. T.P. Queiroz, R.S. de Molon, F.Á. Souza, R. Margonar, A.H.A. Thomazini, A.C. Guastaldi, and E. Hochuli-Vieira, Clin. Oral Invest. 21, 685. (2017).

    Article  Google Scholar 

  4. C. Debry, N.E. Vrana, A. Dupret-Bories, and N. Engl, J. Med. 376, 97. (2017).

    Google Scholar 

  5. A. Carradò, F. Perrin-Schmitt, Q.V. Le, M. Giraudel, C. Fischer, G. Koenig, L. Jacomine, L. Behr, A. Chalom, L. Fiette, A. Morlet, and G. Pourroy, Dent. Mater. 33, 321. (2017).

    Article  Google Scholar 

  6. M. Szindler and T.G. Gaweł, Porous selective laser melted Ti and Ti6Al4V materials for medical applications. Powder metallurgy-fundamentals and case studies. (InTech.March 29th, 2017).

  7. S. Mueller, B. Hohlweg-Majert, R. Buergers, T. Steiner, T.E. Reichert, K.D. Wolff, and K. Wolff, Clin Oral Invest. 19, 413. (2015).

    Article  Google Scholar 

  8. A.L. Jardini, M.A. Larosa, R. Filho, C.A. Zavaglia, L.F. Bernardes, C. Lambert, D. Calderoni, and P. Kharmandayan, J. Craniomaxillofac. Surg. 42, 1877. (2014).

    Article  Google Scholar 

  9. H. Rotaru, R. Schumacher, S.G. Kim, and C. Dinu, Maxillofac. Plast. Reconstr. Surg. 37, 12. (2015).

    Article  Google Scholar 

  10. G.J. Huang, S. Zhong, S.M. Susarla, E.W. Swanson, J. Huang, and C.R. Gordon, J. Craniofac. Surg. 26, 64. (2015).

    Article  Google Scholar 

  11. A. Ridwan-Pramana, P. Marcian, L. Borak, N. Narra, T. Forouzanfar, and J. Wolff, J. Craniomaxillofac. Surg. 44, 34. (2016).

    Article  Google Scholar 

  12. A. Sanan, and S.J. Haines, Neurosurg. 40, 588. (1997).

    Google Scholar 

  13. M. Ridzwan, S. Shuib, A. Hassan, A. Shokri, and M.M. Ibrahim, J. Med. Sci. 7, 460. (2007).

    Article  Google Scholar 

  14. M. Esposito, J.M. Hirsch, U. Lekholm, and P. Thomsen, Eur. J. Oral Sci. 106, 527. (1998).

    Article  Google Scholar 

  15. A.M. Roos-Jansaker, S. Renvert, and J. Egelberg, J. Clin. Periodontol. 30, 467. (2003).

    Article  Google Scholar 

  16. B. Harris, Mater. Des. 12, 259. (1991).

    Article  Google Scholar 

  17. R.F. Landel, and L.E. Nielsen, Mechanical properties of polymers and composites (CRC Press, Boca Raton, 1993).

    Book  Google Scholar 

  18. E.L. Kostoryz, P.Y. Tong, C.C. Chappelow, J.D. Eick, A.G. Glaros, and D.M. Yourtee, Dent Mater. 15, 363. (1999).

    Article  Google Scholar 

  19. M. Reggente, M. Harhash, S. Kriegel, W. He, P. Masson, J. Faerber, G. Pourroy, H. Palkowski, and A. Carradò, Compos. Struct. 218, 107. (2019).

    Article  Google Scholar 

  20. J.E. Raynor, J.R. Capadona, D.M. Collard, T.A. Petrie, and A.J. García, Biointerphases 4, FA3. (2009).

    Article  Google Scholar 

  21. A. Michiardi, G. Hélary, P.C. Nguyen, L.J. Gamble, F. Anagnostou, D.G. Castner, and V. Migonney, Acta Biomater. 6, 667. (2010).

    Article  Google Scholar 

  22. F. El Khadali, G. Hélary, G. Pavon-Djavid, and V. Migonney, Biomacromol 3, 51. (2002).

    Article  Google Scholar 

  23. F. Anagnostou, F. Debet, G. Pavon-Djavid, Z. Goudaby, G. Hélary, and V. Migonney, Biomaterials 27, 3912. (2006).

    Article  Google Scholar 

  24. H. Felgueiras, M. Evans, and V. Migonney, Acta Biomater. 28, 225. (2015).

    Article  Google Scholar 

  25. H. Felgueiras, and V. Migonney, IRBM 37, 165. (2016).

    Article  Google Scholar 

  26. C. Falentin-Daudré, V. Migonney, H. Chouirfa, and J. S. Baumann, WO patent PCT/EP2016/068909 (August 7th, 2015).

  27. H. Chouirfa, V. Migonney, and C. Falentin-Daudré, RSC Adv. 6, 13766. (2016).

    Article  Google Scholar 

  28. S. Minko, Polymer Surfaces and Interfaces, edited by M. Stamm (Springer, Berlin, 2008), pp. 215–234.

  29. M. Reggente, P. Masson, C. Dollinger, H. Palkowski, S. Zafeiratos, L. Jacomine, D. Passeri, M. Rossi, N.E. Vrana, G. Pourroy, and A. Carradò, ACS Appl. Mater. Interfaces 10, 5967. (2018).

    Article  Google Scholar 

  30. M. Kim, S. Schmitt, J. Choi, J. Krutty, and P. Gopalan, Polymers 7, 1346. (2015).

    Article  Google Scholar 

  31. R.N. Foster, E.T. Harrison, and D.G. Castner, Langmuir 32, 3207. (2016).

    Article  Google Scholar 

  32. R.N. Foster, P.K. Johansson, N. Tom, P. Koelsh, and D.G. Castner, J. Vac. Sci. Technol. A 33, 05E131. (2015).

    Article  Google Scholar 

  33. R.N. Foster, A.J. Keefe, S. Jiang, and D.G. Castner, J. Vac. Sci. Technol. A 31, 06F103. (2013).

    Article  Google Scholar 

  34. H. Chouirfa, M. Evans, D. Castner, P. Bean, D. Mercier, A. Galtayries, C. Falentin-Daudré, and V. Migonney, Biointerphases 12, 02C418. (2017).

    Article  Google Scholar 

  35. H. Chouirfa, D.M. Evans, P. Bean, A. Saleh-Mghir, A.-C. Crémieux, D.G.C. Castner, C. Falentin-Daudré, V. Migonney, and A.C.S. Appl, Mat. Interfaces 10, 1480. (2018).

    Article  Google Scholar 

  36. K. Zhang, J.A. Li, K. Deng, T. Liu, J.Y. Chen, and N. Huang, Biointerfaces 108, 295. (2013).

    Article  Google Scholar 

  37. G. Helary, F. Noirclere, J. Mayingi, and V. Migonney, Acta Biomater. 5, 124. (2009).

    Article  Google Scholar 

  38. N.P. Peksheva, and V.M. Strukov, Russ. Chem. Rev. 48, 1092. (1979).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the French Ministry of National Education, Higher Education, and Research. The materials used in this study were financed by the ANR-DFG project (ANR-18-CE92-0056-01). We especially thank the ANR DFG for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celine Falentin-Daudre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 556 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, C., Baumann, JS., Masson, P. et al. Double Functionalization for the Design of Innovative Craniofacial Prostheses. JOM 74, 87–95 (2022). https://doi.org/10.1007/s11837-021-04997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04997-0

Navigation