Skip to main content
Log in

Microstructure, Thermal Insulation, and High-Temperature Mechanical Properties of Layered Porous High Nb-TiAl Composite Sheets

  • 2D Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Porous materials can effectively improve the thermal insulation performance of materials. Therefore, this study used pure Ti foil, pure Al powder, and pure Nb powder as raw materials. Layered porous high Nb-TiAl alloys have been prepared by vacuum hot-pressing sintering and multi-step heat treatment (low-temperature heat treatment and high-temperature heat treatment). The materials are composed of α2-Ti3Al, γ-TiAl, and Al3Nb. Holes are formed in the Al3Nb layer. The thermal insulation and tensile properties are measured at high temperature. The results show that the thermal insulation performance of the layered porous high Nb-TiAl alloy sheet is better than that of the layered high Nb-TiAl alloy (non-porous) and the traditional TiAl alloy. In this work, the materials achieved a good mechanical property-insulation performance synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Banhart, Prog Mater Sci 46, 559. (2001).

    Article  Google Scholar 

  2. G.J. Davies, and S. Zhen, J. Mater. Sci. 18, 1899. (1983).

    Article  Google Scholar 

  3. J. Banhart, Prog. Mater Sci. 6, 559. (2001).

    Article  Google Scholar 

  4. H.B. Jin, and K.S. Suslick, Adv. Mater. 21, 3186. (2009).

    Article  Google Scholar 

  5. G.F. Mi, H.Y. Li, X.Y. Liu, and K.F. Wang, J. Iron Steel Res. Int. 1, 92. (2009).

    Article  Google Scholar 

  6. F. Appel, H. Clemens, and F.D. Fischer, Prog. Mater Sci. 81, 55. (2016).

    Article  Google Scholar 

  7. Y.W. Kim, JOM 46, 30. (1994).

    Article  Google Scholar 

  8. X. Wu, Intermetallics 14, 1114. (2006).

    Article  Google Scholar 

  9. F. Appel, M. Oehring, and R. Wagner, Intermetallics 8, 1283. (2000).

    Article  Google Scholar 

  10. G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, and C.T. Liu, Nat. Mater. 15, 876. (2016).

    Article  Google Scholar 

  11. N. Cui, F.T. Kong, X.P. Wang, Y.Y. Chen, and H.T. Zhou, Mater. Sci. Eng. A, 15, 231 (2016).

  12. J. Yang, X. Wang, B. Cao, Y. Wu, K. Zhang, and R. Hu, Metall. Mater. Trans. A 48, 5095. (2017).

    Article  Google Scholar 

  13. Y. Li, L. Zhou, J. Lin, H. Chang, and F. Li, J. Alloys Compd. 668, 22. (2016).

    Article  Google Scholar 

  14. Z.W. Ji, L. Song, Q.M. Hu, D. Kim, and L. Vitos, Acta Mater. 144, 835. (2018).

    Article  Google Scholar 

  15. Z.Y. Shen, L.M. He, G.H. Huang, R. Mu, J.W. Gu, and W.Z. Liu, Acta Metall. Sin. 52, 1579. (2016).

    Google Scholar 

  16. I.K. Kim, and I.H. Sun, Mater. Des. 57, 625. (2014).

    Article  Google Scholar 

  17. C.S. Zhang, Q.Q. Ni, S.Y. Fu, and K. Kurashiki, Compos. Sci. Technol. 67, 2973. (2007).

    Article  Google Scholar 

  18. M.S.A. Heikkinen, and N.H. Harley, J. Aerosol. Sci. 31, 721. (2000).

    Article  Google Scholar 

  19. J.D.H. Paul, F. Appel, and R. Wagner, Acta Mater. 46, 1075. (1998).

    Article  Google Scholar 

  20. C. Herzig, T. Przeorski, M. Friesel, F. Hisker, and S. Divinski, Intermetallics 9, 461. (2001).

    Article  Google Scholar 

  21. S. Bystrzanowski, A. Bartels, H. Clemens, R. Gerling, F.P. Schimansky, G. Dehm, and H. Kestler, Intermetallics 13, 515. (2005).

    Article  Google Scholar 

  22. M. Adeli, S.H. Seyedein, M.R. Aboutalebi, M. Kobashi, and N. Kanetake, J. Alloys Compd. 497, 100. (2010).

    Article  Google Scholar 

  23. L.L. Zhao, J.P. Lin, G.L. Chen, and Y.L. Wang, Acta Metall. Sinica 460, 368. (2008).

    Google Scholar 

  24. W.Y. Gui, Y.F. Liang, G.J. Hao, J.P. Lin, D.Y. Sun, M.D. Liu, C. Liu, and H. Zhang, J. Alloys Compd. 744, 463. (2018).

    Article  Google Scholar 

  25. Y.H. He, Y. Jiang, N.P. Xu, J. Zou, and B.Y. Huang, Adv. Mater. 19, 2102. (2007).

    Article  Google Scholar 

  26. Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang, and G.L. Chen, J. Alloys Compd. 1, 297. (2008).

    Article  Google Scholar 

  27. T. Ide, M. Tane, and H. Nakajima, Mater. Sci. Eng. A, 1, 220 (2009).

  28. T. Lechner, and E. Hahne, Thermochim. Acta 93, 341. (1993).

    Article  Google Scholar 

  29. K.B. Larson, and K. Koyama, J. Appl. Phys. 2, 465. (1967).

    Article  Google Scholar 

  30. L. Song, L.Q. Zhang, X.J. Xu, J. Sun, and J.P. Lin, Scripta Mater. 68, 929. (2013).

    Article  Google Scholar 

  31. S. L. Draper, D. Krause, B. Lerch, I. E. Locci, B. Doehnert, R. Nigam, G. Das, P. Sickles, B. Tabernig, and N. Reger, Mater. Sci. Eng. A, 464, 330 (2007).

  32. N. Chawla and X. Deng, Mater. Sci. Eng., A, 390, 98 (2005).

  33. S.J. Polasik, J.J. Wiliams, and N. Chawla, Metall. Mater. Trans. A 33, 73. (2002).

    Article  Google Scholar 

  34. B. Zhao, T.Y. Yu, W.F. D, L.C. Zhang, H.H. Su, Z.Z. Chen, Mater. Sci. Eng. A, 730, 345 (2018).

Download references

Funding

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (no. 51704088) and Young Innovative Talents Training Plan of Heilongjiang Province (no. UNPYSCT-2017084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Ye, P., Fang, W. et al. Microstructure, Thermal Insulation, and High-Temperature Mechanical Properties of Layered Porous High Nb-TiAl Composite Sheets. JOM 73, 3753–3760 (2021). https://doi.org/10.1007/s11837-021-04981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04981-8

Navigation