Skip to main content
Log in

Effect of Al3Er Particles on the Structure, Mechanical Properties, and Fracture of AA5056 Alloy After Casting and Deformation Treatment

  • Advanced Casting and Melt Processing Technology for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The structure of the AA5056-Al3Er composite and the initial alloy was studied by optical and scanning electron microscopy. The introduction of 0.23 wt.% particles does not modify the structure of the aluminum alloy, but, due to dispersion hardening, increases the ultimate tensile strength and ductility of the metal matrix. Rolling the AA5056-Al3Er alloy leads to a more uniform distribution of particles in the volume of the material, but does not increase its yield strength or ultimate tensile strength. A more uniform distribution of deformation due to the influence of Al3Er particles made it possible to increase the ductility of the AA5056 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scr. Mater. 36(6), 699. https://doi.org/10.1016/S1359-6462(96)00446-0 (1997).

    Article  Google Scholar 

  2. R.H. Jones, JOM 55(2), 42. https://doi.org/10.1007/s11837-003-0225-5 (2003).

    Article  Google Scholar 

  3. C. Kannan, and R. Ramanujam, Sci. Technol. Mater. 30, 109. https://doi.org/10.1016/j.stmat.2018.05.005 (2018).

    Article  Google Scholar 

  4. V.K.V. Meti, S. Shirur, J. Nampoothiri, K.R. Ravi, and I.G. Siddhalingeshwar, Trans. Indian Inst. Metals 71, 841. https://doi.org/10.1007/s12666-017-1216-5 (2018).

    Article  Google Scholar 

  5. A.K. Basak, A. Pramanik, and C. Prakash, Mater. Sci. Eng. A 763, 138. https://doi.org/10.1016/j.msea.2019.138141 (2019).

    Article  Google Scholar 

  6. H. Jafari, M.H. Idris, A. Ourdjini, and M.R. Abdul Kadir, Mater Chem. Phys. 138, 672. https://doi.org/10.1016/j.matchemphys.2012.12.037 (2013).

    Article  Google Scholar 

  7. S. Tahamtan, A. Halvaee, M. Emamy, and M.S. Zabihi, Mater. Des. 49, 347. https://doi.org/10.1016/j.matdes.2013.01.032 (2013).

    Article  Google Scholar 

  8. N. Hosseini, F. Karimzadeh, M.H. Abbasi, and M.H. Enayati, Mater. Des. 31, 4777. https://doi.org/10.1016/j.matdes.2010.05.001 (2010).

    Article  Google Scholar 

  9. S.O. Adeosun, E.I. Akpan, O.P. Gbenebor, and S.A. Balogun, Trans. Nonferrous Metals Soc. China 26, 339. https://doi.org/10.1016/S1003-6326(16)64124-9 (2016).

    Article  Google Scholar 

  10. H. Goyal, N. Mandal, H. Roy, S.K. Mitra, and B. Mondal, Trans. Indian Inst. Metals 68, 453. https://doi.org/10.1007/s12666-014-11080476-6 (2015).

    Article  Google Scholar 

  11. H. Abdizadeh, and M.A. Baghchesara, Arab. J. Sci. Eng. 1127, 4475. https://doi.org/10.1007/s13369-017-2929-9 (2018).

    Article  Google Scholar 

  12. M. Khademian, A. Alizadeh, and A. Abdollahi, Trans. Indian Inst. Metals 70, 1130. https://doi.org/10.1007/s12666-016-0962-0 (2017).

    Article  Google Scholar 

  13. Z. Sun, H. Hashimoto, Q. Wang, Y. Park, and T. Abe, Mater. Trans. https://doi.org/10.2320/matertrans1989.41.597 (2000).

    Article  Google Scholar 

  14. M.K. Akbari, H.R. Baharvandi, and K. Shirvanimoghaddam, Mater. Des., 66, 150 (1980–2015). https://doi.org/10.1016/j.matdes.2014.10.048

  15. L. Katsarou, et al., Mater. Sci. Eng. A 659, 84. https://doi.org/10.1016/j.msea.2016.02.042 (2016).

    Article  Google Scholar 

  16. V.M. Sreekumar, N.H. Babu, and D.G. Eskin, J. Mater. Eng. Perf. 26(9), 4166. https://doi.org/10.1007/s11665-017-2853-x (2017).

    Article  Google Scholar 

  17. H. Dieringa, J. Mater. Sci. 46(2), 289. https://doi.org/10.1007/s10853-010-5010-6 (2011).

    Article  Google Scholar 

  18. H. Puga, S. Costa, J. Barbosa, S. Ribeiro, and M. Prokic, J. Mater. Process Technol. 211, 1729. https://doi.org/10.1016/j.jmatprotec.2011.05.012 (2011).

    Article  Google Scholar 

  19. O.B. Kudryashova, D.G. Eskin, A.P. Khrustalev, and S.A. Vorozhtsov, Russ. J. Non-Ferrous Metals 58(4), 427. https://doi.org/10.3103/S1067821217040101 (2017).

    Article  Google Scholar 

  20. F. Zhang, and A.M. Jacobi, Colloid. Surf. A 506, 438. https://doi.org/10.1016/j.colsurfa.2016.07.026 (2016).

    Article  Google Scholar 

  21. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon, Acta Mater. 50(3), 553. https://doi.org/10.1016/S1359-6454(01)00368-8 (2002).

    Article  Google Scholar 

  22. Y.A. Filatov, V.I. Yelagin, and V.V. Zakharov, Mater. Sci. Eng. A 280(1), 97. https://doi.org/10.1016/S0921-5093(99)00673-5 (2000).

    Article  Google Scholar 

  23. Z. Ahmad, JOM 55(2), 35. https://doi.org/10.1007/s11837-003-0224-6 (2003).

    Article  Google Scholar 

  24. E.A. Marquis, and D.N. Seidman, Acta Mater. 49, 1909. https://doi.org/10.1016/S1359-6454(01)00116-1 (2001).

    Article  Google Scholar 

  25. D.N. Seidman, E.A. Marquis, and D.C. Dunand, Acta Mater. 50, 4021. https://doi.org/10.1016/S1359-6454(02)00201-X (2002).

    Article  Google Scholar 

  26. J. Røyset, and N. Ryum, Mater. Sci. Eng. A 396, 409. https://doi.org/10.1016/j.msea.2005.02.015 (2005).

    Article  Google Scholar 

  27. P.H.L. Souza, C.A.S. De oliveira, and J.M. do Vale Quaresma, J. Mater. Res. Technol. 7(1), 66. https://doi.org/10.1016/j.jmrt.2017.05.006 (2018).

    Article  Google Scholar 

  28. Ch. Zhang, Y. Jiang, F. Cao, T. Hu, Y. Wang, and D. Yin, J. Mater. Sci. Technol. 35(5), 930. https://doi.org/10.1016/j.jmst.2018.11.004 (2019).

    Article  Google Scholar 

  29. Y. Yang, J.J. Licavoli, S.A. Hackney, and P.G. Sanders, J. Mater. Sci. 56(18), 11114. https://doi.org/10.1007/s10853-021-05981-4 (2021).

    Article  Google Scholar 

  30. A. Pozdniakov, R. Barkov, A. Prosviryakov, A. Churyumov, I. Golovin, and V. Zolotorevskiy, J. Alloys Compd. 765, 1. https://doi.org/10.1016/j.jallcom.2018.06.163 (2018).

    Article  Google Scholar 

  31. N. Su, R. Guan, X. Wang, Y. Wang, W. Jiang, and H. Liu, J. Alloys Compd. 680, 283. https://doi.org/10.1016/j.jallcom.2016.04.137 (2016).

    Article  Google Scholar 

  32. Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, J. Alloys Compd. 610, 27. https://doi.org/10.1016/j.jallcom.2014.04.093 (2014).

    Article  Google Scholar 

  33. H. Wu, S. Wen, X. Wu, K. Gao, H. Huang, W. Wang, and Z. Nie, Mater. Sci. Eng. A 639, 307. https://doi.org/10.1016/j.msea.2015.05.027 (2015).

    Article  Google Scholar 

  34. M. Colombo, E. Gariboldi, and A. Morri, J. Alloys Compd. 708, 1234. https://doi.org/10.1016/j.jallcom.2017.03.076 (2017).

    Article  Google Scholar 

  35. Y.H. Liang, Z.M. Shi, G.W. Li, R.Y. Zhang, and G. Zhao, J. Alloys Compd. 781, 235. https://doi.org/10.1016/j.jallcom.2018.12.063 (2019).

    Article  Google Scholar 

  36. S. Lu, D. Yin, Y.C. Zhao, C. Liu, M.C. Zhao, Z. Yu, H. Wang, and A. Atrens, J. Alloys Compd. 811, 152005. https://doi.org/10.1016/j.jallcom.2019.152005 (2019).

    Article  Google Scholar 

  37. S. Vorozhtsov, L. Minkov, V. Dammer, A. Khrustalyov, I. Zhukov, V. Promakhov, A. Vorozhtsov, and M. Khmeleva, JOM 69, 2653. https://doi.org/10.1007/s11837-017-2594-1 (2017).

    Article  Google Scholar 

  38. ASTM E10:2017. Standard Test Method for Brinell Hardness of Metallic Materials.

  39. E. Philofsky, Solid-State Electron. 13, 1391. https://doi.org/10.1016/0038-1101(70)90172-3 (1970).

    Article  Google Scholar 

  40. E. Ghassemali, M. Riestra, T. Bogdanoff, B.S. Kumar, and S. Seifeddine, Proc. Eng. 207, 19. https://doi.org/10.1016/j.proeng.2017.10.731 (2017).

    Article  Google Scholar 

  41. V.V. Promakhov, M.G. Khmeleva, I.A. Zhukov, V.V. Platov, A.P. Khrustalyov, and A.B. Vorozhtsov, Metals 9, 87. https://doi.org/10.3390/met9010087 (2019).

    Article  Google Scholar 

  42. H. Dieringa, L. Katsarou, R. Buzolin, G. Szakács, M. Horstmann, M. Wolff, C. Mendis, S. Vorozhtsov, and D. StJohn, Metals 7, 388. https://doi.org/10.3390/met7100388 (2017).

    Article  Google Scholar 

  43. N.A. Belov, Met. Sci. Heat Treat. 37, 237. https://doi.org/10.1007/BF01152226 (1995).

    Article  Google Scholar 

  44. Z. Zhang, and D.L. Chen, Mater. Sci. Eng. A 483–484, 148. https://doi.org/10.1016/j.msea.2006.10.184.1054 (2008).

    Article  Google Scholar 

  45. P. Samal, P.R. Vundavilli, A. Meher, and M.M. Mahapatra, J. Manuf. Process. 59, 131. https://doi.org/10.1016/j.jma-1056pro.2020.09.010 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by financial support from the Ministry of Science and Higher Education of the Russian Federation (State assignment No. 0721-2020-0028). This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the frame work of agreement dated 07/26/2021 No. 075-15-2021-693 (No.13.ЦKΠ.21.0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton P. Khrustalyov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrustalyov, A.P., Kozulin, A.A., Zhukov, I.A. et al. Effect of Al3Er Particles on the Structure, Mechanical Properties, and Fracture of AA5056 Alloy After Casting and Deformation Treatment. JOM 73, 3858–3865 (2021). https://doi.org/10.1007/s11837-021-04940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04940-3

Navigation