Skip to main content
Log in

Measurement of Minor Element Distributions in Complex Copper Converting Slags Using Quantitative Microanalysis Techniques

  • New and Novel Laboratory and Pilot Techniques for Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The distribution coefficients of minor elements Co, Ni, Zn, Pb, Bi, Sn, Sb, As, Te, Se, Ga, Ge, and In between slag, matte, and spinel phases in industrial copper converting slag samples have been determined by the microanalysis method using the combination of electron probe microanalysis (EPMA) with laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The major factors affecting analysis accuracy, including analysis precision, detection limits, background correction, beam damage, and standard selection, are discussed. The determined minor elements distributions show good consistency with most recently published literature data. The present study demonstrates that minor element distributions with precision close to that of controlled laboratory studies could be obtained by direct measurement of plant samples upon careful sampling, microstructural examination, and the application of customized analytical routines. The advantages and limitations of using microanalysis techniques for industry slag assay are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.E. Jackson, H.P. Longerich, G.R. Dunning, and B.J. Freyer, Can. Mineral. 30, 1049. (1992).

    Google Scholar 

  2. K. Avarmaa, H. O’Brien, H. Johto, and P. Taskinen, J. Sustain. Met. 1, 216. (2015).

    Article  Google Scholar 

  3. D. Shishin, T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, Calphad 65, 16. (2019).

    Article  Google Scholar 

  4. D. Shishin, T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, J. Sustain. Met. 5, 240. (2019).

    Article  Google Scholar 

  5. D. Shishin, T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, J. Chem. Thermodyn. 135, 175. (2019).

    Article  Google Scholar 

  6. T.O. Ziebold, Anal Chem. 39, 858. (1967).

    Article  Google Scholar 

  7. F.E. Jenner, H.S.C. O'Neill, Geochem. Geophys. Geosyst., 13, (2012)

  8. K.P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D.E. Jacob, A. Stracke, K. Birbaum, and D.A. Frick, Geostand. Geoanal. Res. 35, 397. (2011).

    Article  Google Scholar 

  9. C. Paton, J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt, J Anal At Spectrom 26, 2508. (2011).

    Article  Google Scholar 

  10. J.E. Barkman, P. Carpenter, J.-C. Zhao, and J.J. Donovan, Microsc Microanal 19, 848. (2013).

    Article  Google Scholar 

  11. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 48, 3002. (2017).

    Article  Google Scholar 

  12. P.J. Sylvester Laser-ablation-ICPMS in the earth sciences: principles and applications, vol 29. Mineralogical association of Canada, (2001)

  13. L. Danyushevsky, P. Robinson, S. Gilbert, M. Norman, R. Large, P. McGoldrick, and M. Shelley, Geochem: Explor. Environ. Anal. 11, 51. (2011).

    Google Scholar 

  14. D. Sukhomlinov, L. Klemettinen, H. O’Brien, P. Taskinen, and A. Jokilaakso, Metall. Mater. Trans. B 50, 2723. (2019).

    Article  Google Scholar 

  15. A. Yazawa, S. Nakazawa, and Y. Takeda, Paper Present. Adv. Sulfide Smelt. 1, 99. (1983).

    Google Scholar 

  16. G. Roghani, Y. Takeda, and K. Itagaki, Metall. Mater. Trans. B 31, 705. (2000).

    Article  Google Scholar 

  17. B. Desai, V. Tathavadkar, and S. Basu, Metall. Mater. Trans. B 49, 1213. (2018).

    Article  Google Scholar 

  18. L. Klemettinen, K. Avarmaa, P. Taskinen, A. Jokilaakso. Behavior of nickel as a trace element and time-dependent formation of spinels in WEEE smelting. In: Extraction 2018. Springer, pp. 1073-1082

  19. A. Dańczak, L. Klemettinen, H. O’Brien, P. Taskinen, D. Lindberg, and A. Jokilaakso, J. Sustain. Met. 7, 1. (2021).

    Article  Google Scholar 

  20. S. Sineva, M. Shevchenko, D. Shishin, T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, JOM 72, 3401. (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Denis Shishin for valuable discussion and the anonymous reviewers for constructive comments. The authors acknowledge the facilities of Microscopy Australia at the Centre for Advanced Microscopy, Australian National University, a facility that is funded by the university and the Federal Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Fallah-Mehrjardi, A., Specht, A. et al. Measurement of Minor Element Distributions in Complex Copper Converting Slags Using Quantitative Microanalysis Techniques. JOM 74, 185–194 (2022). https://doi.org/10.1007/s11837-021-04920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04920-7

Navigation