Skip to main content

Advertisement

Log in

Physicochemical Simulation of the Melting Process of Silicon-Containing Waste from the Energy Complex

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dumps for coal-fired thermal power plant ash-and-slag mixture storage occupy large areas and require considerable costs. The chemical composition of such mixtures is quite diverse and includes a large number of chemical elements, thus providing ample opportunities to be used in various ways. In this article, the oxidation–remediation processes and melt formation in the Al-C-Ca-Fe-K-Mg-Mn-Na-P-Si-Ti-B-Cr-F-N-H-O system have been studied. The techniques of a model formation and numerical experiment performance, setting the initial conditions and limitations, p,T-scenarios of the processes, and analysis of the simulation results are shown. For better demonstration, a generalized model reflecting the most typical features of the ash-and-slag mixture melting processes is provided. A physical–chemical modeling method is based on finding the global minimum of the thermodynamic potential (Gibbs energy) of the modeled system on the set of limitations established by the system of mass balance equations. The melting process has been investigated under two scenarios: amorphous and crystalline phases. The results of the equilibrium composition of the system are given as a function of the ash–slag mixture melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Hanif, Z. Lu, and Z. Li, Constr. Build. Mater. 144, 373 (2017).

    Article  Google Scholar 

  2. R. Dandautiya and A.P. Singh, Waste. Manag. (Oxf., UK) 99, 90 (2019).

    Article  Google Scholar 

  3. T.G. Korotkova, S.J. Ksandopulo, S.A. Bushumov, S.D. Burlaka, and Y.V. Say, Orient. J. Chem. 33, 186 (2017).

    Article  Google Scholar 

  4. M. Mahima Kumar, R. Senthilvadivu, J.S. Brahmaji Rao, M. Neelamegam, G.V.S. Ashok Kumar, R. Kumar, and H. Jena, J. Radioanal. Nucl. Chem. 325, 941 (2020).

    Article  Google Scholar 

  5. M. Vukićević, Z. Popović, J. Despotović, and L. Lazarević, Transport 33, 389 (2018).

    Article  Google Scholar 

  6. E. Khobotova, M. Ignatenko, V. Larin, Y. Kalmykova, and A. Turenko, Chem. Chem. Technol. 11, 378 (2017).

    Article  Google Scholar 

  7. Y.V. Ryabov, L.M. Delitsyn, N.N. Ezhova, and S.V. Sudareva, Therm. Eng. 66, 149 (2019).

    Article  Google Scholar 

  8. V.P. Myazin, L.V. Shumilova, K.K. Razmakhnin, and S.A. Bogidaev, J. Min. Sci. 54, 845 (2018).

    Article  Google Scholar 

  9. A.S. Meawad, D.Y. Bojinova, and Y.G. Pelovski, Waste Manag. (Oxf., UK) 30, 2548 (2010).

    Article  Google Scholar 

  10. H. Kumar, R. Prasad, A. Srivastava, M. Vashista, and M.Z. Khan, J. Clean. Prod. 196, 460 (2018).

    Article  Google Scholar 

  11. R. Ji, Z. Zhang, C. Yan, M. Zhu, and Z. Li, Constr. Build. Mater. 114, 888 (2016).

    Article  Google Scholar 

  12. M. Vukićević, M. Marjanović, V. Pujević, and S. Jocković, Materials 12, 3018 (2019).

    Article  Google Scholar 

  13. M. Ahmaruzzaman, Prog. Energy Combust. Sci. 36, 327 (2010).

    Article  Google Scholar 

  14. T.-A. Kua, A. Arulrajah, S. Horpibulsuk, Y.-J. Du, and S.-L. Shen, Constr. Build. Mater. 115, 565 (2016).

    Article  Google Scholar 

  15. D.K. Chanda, S.R. Chowdhury, M. Bhattacharya, A.K. Mandal, N. Dey, and A.K. Mukhopadhyay, Constr. Build. Mater. 158, 516 (2018).

    Article  Google Scholar 

  16. S. Kumar, S.K. Singh, and S.C. Mishra, Mater. Today Proc. 5, 3396 (2018).

    Article  Google Scholar 

  17. I.K. Karpov, K.V. Chudnenko, D.A. Kulik, and V.A. Bychinskii, Am. J. Sci. 302, 281 (2002).

    Article  Google Scholar 

  18. I.K. Karpov, K.V. Chudnenko, and D.A. Kulik, Am. J. Sci. 297, 767 (1997).

    Article  Google Scholar 

  19. N.V. Golovinih, K.V. Chudnenko, V.A. Bychinskij, and I.I. Shepelev, Himichesk. Tekhnol. https://doi.org/10.31044/1684-5811-2019-20-10-453-461 (2019).

    Article  Google Scholar 

  20. B.M. Kaganovich, S.P. Philipov, and E. Anciferov, Effectivnost’ Himicheskih Tehnologij, Termodinamika, Ekologia, Prognozy (Nauka, Novosibirsk, 1989).

    Google Scholar 

  21. P.B. Barton, P.M. Betke, and P. Tulmin, Mineralog. Soc. Am Spec. 1, 171 (1963).

    Google Scholar 

  22. I.K. Karpov, К.V. Chudnenko, D.A. Kulik, O.V. Abchenko, and V.A. Bychinskij, Geochem. Int. 11, 1108 (2001).

    Google Scholar 

  23. C.P. Ramesh, H.P. Vageesh, T. Raghavendra, B.C. Udayashankar, and A. Shashishankar, Int. J. Eng. Res. Technol. 12(5), 636 (2019).

    Google Scholar 

  24. S. Patel and J.T. Shahu, J. Mater. Civ. Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002320 (2018).

    Article  Google Scholar 

  25. W.E. Brownell, J. Am. Ceram. Soc. 6, 226 (1958).

    Article  Google Scholar 

  26. A. Muan, J. Am. Ceram. Soc. 4, 121 (1957).

    Article  Google Scholar 

  27. M.K. Murthy and F.A. Hummel, J. Am. Ceram. Soc. 5, 267 (1960).

    Article  Google Scholar 

  28. Y. Wang, Y. Xiang, D. Wang, C. Dong, Y. Yang, X. Xiao, Q. Lu, and Y. Zhao, Energy Fuels 30, 1437 (2016).

    Google Scholar 

  29. N.V. Golovnykh, V.A. Bychinskii, L.M. Filimonova, and K.V. Chudnenko, Theor. Found. Chem. Eng. 4, 587 (2017).

    Article  Google Scholar 

  30. O.N. Koroleva, V.A. Bychinskii, A.A. Tupitsyn, M.V. Shtenberg, V.A. Krenev, and S.V. Fomichev, Russ. J. Inorg. Chem. 9, 1104. https://doi.org/10.1134/s0036023615090107 (2015).

    Article  Google Scholar 

  31. V.A. Bychinskii, A.A. Tupitsyn, K.V. Chudnenko, A.V. Mukhetdinova, S.V. Fomichev, and V.A. Krenev, Russ. J. Inorg. Chem. 10, 1197. https://doi.org/10.1134/s0036023613100021 (2013).

    Article  Google Scholar 

  32. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, J. Phys. Chem. Ref. Data 14, 1 (1985).

    Article  Google Scholar 

  33. R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).

    Google Scholar 

  34. R.G. Berman, J. Petrol. 29, 445 (1988).

    Article  Google Scholar 

  35. G.S. Aslanian, E.E. Shpil’rain, and V.L. Kuz’minnov, Tverdoe Solnce Zemli (Moskwa, Nauka, 1990).

    Google Scholar 

  36. A.A. Vvedenskij, Termodinamicheskie Rascheti v Toplivnoj Promishlennosti (Gostehizdat, Moskva, 1949).

    Google Scholar 

  37. N.V. Lavrov, Phisiko-himicheskie osnovi gorenia i gazifikacii toplov (Metallizdat, Moskwa, 1957).

    Google Scholar 

  38. Spravochnik himika-energetika, ed. S.M. Gurvich, 2nd ed. (Moskwa: Energia, 1972).

  39. L.J. Kizilyptejn, S.V. Levchenko, and A.G. Peretjatko, Himija Tverdogo Topliva 6, 136 (1990).

    Google Scholar 

  40. I.P. Ivanova, I.T. Zhukov, V.G. Meshcheryakov, I.T. Marchenko, Yu.V. Sakva, E.B. Komar, and L.P. Samarina, Soviet Power Eng. 11(4), 244 (1982).

    Google Scholar 

  41. S. Srinivasachar, J.J. Helble, and A.A. Boni, Prog. Energy Combust. Sci. 16, 281 (1990).

    Article  Google Scholar 

  42. R.A. Robie and D.R. Waldbaum, Thermodynamic Properties of Minerals and Related Substances at 298.15°K (25.0°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures (Washington, DC: U.S. Govt. Print. Off., 1968). https://doi.org/10.3133/b1259.

  43. H. Nowotny and R. Funk, Radex Rundsch. 8, 334 (1951).

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, Project No. 19-33-60077\19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Grushko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Additional file1 (PDF 438 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grushko, I.S., Bychinskii, V.A. & Chudnenko, K.V. Physicochemical Simulation of the Melting Process of Silicon-Containing Waste from the Energy Complex. JOM 73, 3000–3009 (2021). https://doi.org/10.1007/s11837-021-04820-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04820-w

Navigation