Skip to main content
Log in

A First-Principles Tool to Discover New Pyrometallurgical Refining Options

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We demonstrate the opportunities of first-principles density functional theory (DFT) calculations for the development of new metallurgical refining processes. As such, a methodology based on DFT calculations is developed to discover new pyrometallurgical refining processes that use the addition of a third element to remove an impurity from a molten host material. As a case study, this methodology is applied to the refining of lead. The proposed method predicts the existing refining routes as well as alternative processes. The most interesting candidate for the removal of arsenic from lead is experimentally verified, which confirms the suitability of the remover element. The method is therefore considered as a useful approach to speed up the discovery of new pyrometallurgical refining processes, as it provides an ordered set of interesting candidate remover elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.R. Stahel, Nature, 531, 435 (2016).

    Article  Google Scholar 

  2. H.-Y. Kang and J.M. Schoenung, Resour. Conserv. Recycl., 45, 368 (2005).

    Article  Google Scholar 

  3. F. Cucchiella, I. DAdamo, S.L. Koh, and P. Rosa, Renew. Sustain. Energy Rev., 51, 263 (2015).

    Article  Google Scholar 

  4. J. Cui and L. Zhang, J. Hazard. Mater., 158, 228 (2008).

    Article  Google Scholar 

  5. B.K. Reck and T.E. Graedel, Science, 337, 690 (2012).

    Article  Google Scholar 

  6. K. Binnemans, P.T. Jones, B. Blanpain, T.V. Gerven, Y. Yang, A. Walton, and M. Buchert, J. Clean. Prod., 51, 1 (2013).

    Article  Google Scholar 

  7. P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), 864 (1964).

    Article  MathSciNet  Google Scholar 

  8. W. Kohn and L. Sham, Phys. Rev. A, 140(4A), 1133 (1965).

    Article  Google Scholar 

  9. M. Popov, V. Razumovskiy, A. Reyes-Huamantinco, L. Romaner, and J. Spitaler, Berg Hüttenmänn. Montsheft., 59(9), 367 (2014).

    Article  Google Scholar 

  10. D. Morgan, G. Ceder, and S. Curtarolo, Meas. Sci. Technol., 16(1), 296 (2005).

    Article  Google Scholar 

  11. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Comput. Mater. Sci., 68, 314 (2013).

    Article  Google Scholar 

  12. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM, 65, 1501 (2013).

    Article  Google Scholar 

  13. A. Jain, S.-A. Seyed-Reihani, C.C. Fischer, D.J. Couling, G. Ceder, and W.H. Green, Chem. Eng. Sci., 65, 3025 (2010).

    Article  Google Scholar 

  14. S. Guruswamy, Engineering Properties and Applications of Lead Alloys (Boca Raton: CRC, 1999), pp. 17–18.

    Book  Google Scholar 

  15. B. Friedrich, A. Arnold, and F. Toubartz, in Proceedings of EMC (2001), p. 295.

  16. A. Davidson, J. Ryman, C. Sutherland, E. Milner, R. Kerby, H. Teindl, A. Melin, and H. Bolt, Ullmanns Encyclopedia of Industrial Chemistry—Lead (Weinheim: Wiley, 2014), p. 29.

    Google Scholar 

  17. W. Kroll, J. Frankl. Inst., 260, 169 (1955).

    Article  Google Scholar 

  18. F.K. Ojebuoboh, JOM, 44, 46 (1992).

    Article  Google Scholar 

  19. F. Makuei and G. Senanayake, Miner. Eng., 115, 79 (2018).

    Article  Google Scholar 

  20. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1997).

    Article  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996).

    Article  Google Scholar 

  23. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, 15 (1996).

    Article  Google Scholar 

  24. J. Hafner, J. Comput. Chem., 29, 2044 (2008).

    Article  Google Scholar 

  25. K. Meissner, Metall. Erz., 18(7), 146 (1921).

    Google Scholar 

Download references

Acknowledgements

Computational resources have been provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Fédération Wallonie Bruxelles (CECI) funded by the Fonds de la Recherche Scientifique de Belgique (FRS-FNRS). Funding via the Agency for Innovation and Entrepreneurship (VLAIO) project HBC.2016.0733 of the Flemish region with Campine is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel J. van Setten.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Setten, M.J., Malfliet, A., Hautier, G. et al. A First-Principles Tool to Discover New Pyrometallurgical Refining Options. JOM 73, 2900–2910 (2021). https://doi.org/10.1007/s11837-021-04807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04807-7

Navigation