Skip to main content
Log in

Numerical Investigation of Lime Particle Motion in Steelmaking BOF Process

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The motion and distribution of lime particles in a basic oxygen furnace (BOF) is explored using the proposed 3D comprehensive numerical model taking into account the supersonic oxygen jet, bottom-blowing bubble, melt flow, temperature distribution, and lime particle movement. The gas/slag/metal three-phase flow and interface fluctuation are described using the volume of fluid approach. The two-way coupled Euler–Lagrange method is employed to evaluate the rising of bottom-blowing bubbles. In contrast, the one-way coupled Euler–Lagrange method is adopted to represent the motion of lime particles, which are shown to continuously descend under the effect of gravity after feeding on the top surface. Upon touching the molten slag, the particles first move towards the furnace wall, turning back from both sides, and then travel to the middle from both ends. The particles finally gradually disperse to the whole molten slag layer because of the large- and small-scale vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.L. Cao, Y.N. Wang, Q. Liu, and X.M. Feng, ISIJ Int. 58, 573. (2018).

    Article  Google Scholar 

  2. T.S. Naidu, C.M. Sheridan, and Van LD. Doreen, Miner. Eng. 149, 106234. (2020).

    Google Scholar 

  3. Y.L. Chen, and C.T. Lin, Sustainability 12, 5896. (2020).

    Article  Google Scholar 

  4. Y.N. Wang, L.L. Cao, M. Vanierschot, B. Blanpain, and M.X. Guo, Metall. Mater. Trans. B 50B, 2354. (2019).

    Article  Google Scholar 

  5. Z.W. Chen, S.P. Wu, Y. Xiao, W.B. Zeng, M.W. Yi, and J.M. Wan, J. Clean. Prod. 112, 392. (2016).

    Article  Google Scholar 

  6. Y.C. Ding, T.W. Cheng, P.C. Liu, and W.H. Lee, Constr. Build. Mater. 146, 644. (2017).

    Article  Google Scholar 

  7. Z.C. Yin, J.F. Lu, L. Li, T. Wang, R.H. Wang, X.H. Fan, H.K. Lin, Y.S. Huang, and D.P. Tan, Appl. Sci. 10, 5101. (2020).

    Article  Google Scholar 

  8. G. Wang, Y.H. Wang, and Z.L. Gao, J. Hazard. Mater. 184, 555. (2010).

    Article  Google Scholar 

  9. Y. Jiang, T.C. Ling, C.J. Shi, and S.Y. Pan, Resour. Conserv. Recycl. 136, 187. (2018).

    Article  Google Scholar 

  10. C.J. Tsai, R. Huang, W.T. Lin, and H.N. Wang, Mater. Des. 60, 267. (2014).

    Article  Google Scholar 

  11. A.S. Brand, and J.R. Roesler, Cement Concrete Comp. 60, 1. (2015).

    Article  Google Scholar 

  12. H.J. Odenthal, U. Falkenreck, and J. Schlüter, CFD Simulation of Multiphase Melt Flows in Steelmaking Converters, European Conference on Computational Fluid Dynamics, 2006.

  13. Y. Doh, P. Chapelle, A. Jardy, G. Djambazov, K. Pericleous, G. Ghazal, and P. Gardin, Metall. Mater. Trans. B 44B, 653. (2013).

    Article  Google Scholar 

  14. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, JOM 68, 3126. (2016).

    Article  Google Scholar 

  15. K.Y. Chu, H.H. Chen, P.H. Lai, H.C. Wu, Y.C. Liu, C.C. Lin, and M.J. Lu, Metall. Mater. Trans. B 47B, 948. (2016).

    Article  Google Scholar 

  16. Y.N. Wang, L.L. Cao, M. Vanierschot, Z.F. Cheng, B. Blanpain, and M.X. Guo, Chem. Eng. Sci. 212, 115259. (2020).

    Google Scholar 

  17. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Metall. Mater. Trans. B 46B, 1494. (2015).

    Article  Google Scholar 

  18. C.W. Hirt, and B.D. Nichols, J. Comput. Phys. 39, 201. (1981).

    Article  Google Scholar 

  19. J. Yu, F.B. Liu, H.B. Li, Z.H. Jiang, Y. Li, C.P. Kang, A. Wang, W.C. Zhang, and H. Feng, Metall. Mater. Trans. B 50B, 3112. (2019).

    Article  Google Scholar 

  20. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, and G.Q. Li, Powder Technol. 367, 358. (2020).

    Article  Google Scholar 

  21. Q. Wang, S.Y. Jia, F.S. Qi, G.Q. Li, Y.W. Li, T. Wang, and Z. He, ISIJ Int. 60, 1938. (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of this study and plant data of the Baoshan Iron & Steel Co., Ltd., China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Tian, Y., Wang, Q. et al. Numerical Investigation of Lime Particle Motion in Steelmaking BOF Process. JOM 73, 2733–2740 (2021). https://doi.org/10.1007/s11837-021-04798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04798-5

Navigation