Skip to main content
Log in

Momentum Transfer from Arc to Slag Bath in a DC Ilmenite Smelting Furnace: A Computational Analysis

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A computational fluid dynamics model was developed to study momentum transfer from the plasma arc jet to the slag bath in a direct-current (DC) ilmenite smelting furnace. The arc was approximated with a steady-state turbulent gas jet that had a thrust equivalent to that of an arc. First, a sensitivity study was performed to understand the analogous turbulent gas jet chosen to represent the arc. Then, the turbulent gas jet representation was used to determine steady-state slag bath flow properties as a result of arc impingement. Lastly, to gauge the relative importance of arc impingement as a momentum source, the contributions of different momentum sources in a DC arc furnace were compared, including electromagnetic and buoyancy forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

area [m2]

\(A_{\mathrm {{F_{AT}}}}\) :

proportionality constant (1.663 × 10−7) [N A−2]

B:

magnetic flux density [Wb m−2]

\(d_{\mathrm {E}}\) :

diameter of electrode [m]

\(d_{\mathrm {F}}\) :

diameter of furnace vessel [m]

\(d_{\mathrm {N}}\) :

diameter of inlet jet nozzle [m]

\(F_{\mathrm {AT}}\) :

arc thrust [N]

\(F_{\mathrm {T}}\) :

thrust generated by a turbulent gas jet [N]

\({\mathbf {g}}\) :

gravitational acceleration vector [m s−2]

h :

heat transfer coefficient [W m−2 K−1]

I :

arc current [A]

\({{\mathbf {j}}}\) :

electric current density [A m−2]

\(L_{\mathrm {A}}\) :

arc length [m]

\(L_{\mathrm {E}}\) :

electrode length [m]

p :

instantaneous pressure [Pa]

q :

rate of heat transfer [W]

\(r_{\mathrm {aaz}}\) :

radius of the arc attachment zone [m]

\(r_{\mathrm {cs}}\) :

radius of the cathode spot [m]

\(T_{\mathrm {fluid}}, T_{\mathrm {surface}}\) :

temperature [K]

\({\mathbf {u}}\) :

velocity vector in Cartesian space [m s−1]

\(U_i\) :

mean velocity component [m s−1]

\(u_i\) :

fluctuating velocity component [m s−1]

\(u_{\mathrm {G}}\) :

inlet velocity of gas jet [m s−1]

μ:

dynamic viscosity [Pa s]

\(\rho \) :

mass density [Kg m−3]

\(\tau \) :

shear stress [N m−2]

References

  1. J. Zietsman, Interactions between freeze lining and slag bath in ilmenite smelting. Ph.D. thesis, University of Pretoria (2004).

  2. M. Campforts, E. Jak, B. Blanpain, and P. Wollants, Metall. Mater. Trans. 40(5), 632. (2009).

    Article  Google Scholar 

  3. A. Fallah-Mehrjardi, P. Hayes, and E. Jak, Metall. Mater. Trans. 44(6), 1337. (2013).

    Article  Google Scholar 

  4. J. Zietsman and P. Pistorius, in Heavy Minerals Conference Proceedings (Englewood, USA, SME, 2005), pp. 221–228.

  5. J. Welty, G. Rorrer, and D. Foster, Fundamentals of Momentum, Heat, and Mass Transfer (Wiley, Hoboken, 2008), pp. 201–208.

  6. N. Arzpeyma, Modeling of electric arc furnaces (eaf) with electromagnetic stirring. MSc. thesis, Royal Institute of Technology (2011).

  7. J. Szekely, J. McKelliget, and M. Choudhary, Ironmak. Steelmak. 10(4), 169. (1983).

    Google Scholar 

  8. M. Ramírez, Mathematical modeling of dc electric arc furnace operations. Ph.D. thesis, Massachusetts Institute of Technology (2000).

  9. J. Gruber, T. Echterhof, and H. Pfeifer, Steel Res. Int. 87(1), 15. (2016).

    Article  Google Scholar 

  10. S. Roberts, T. Echterhof, H. Pfeifer, in Proceedings of the 8th International Conference on Modeling and Simulation of Metallurgical Processes in Steelmaking (Warrendale, Association for Iron & Steel Technology, 2019), pp. 260–269.

  11. M. Ramírez and G. Trapaga, ISIJ Int. 43(8), 1167. (2003).

    Article  Google Scholar 

  12. Q. Reynolds, in 9th South African Conference on Computational and Applied Mechanics (Cape Town, Association for Theoretical and Applied Mechanics, 2014), pp. 58–72.

  13. Q. Reynolds, JOM 69(2), 351. (2017).

    Article  Google Scholar 

  14. Q. Reynolds, R. Jones, and B. Reddy, SAIMM 110(12), 733. (2010).

    Google Scholar 

  15. R. Jones, Fundamental aspects of alloy smelting in a dc arc furnace. Ph.D. thesis, University of the Witwatersrand (2015).

  16. B. Bowman, in 52nd Electric Furnace Conference Proceedings (Warrendale, Association for Iron & Steel Technology, 1994), pp. 111–120.

  17. F. Cheslak, J. Nicholls, and M. Sichel, J. Fluid Mech. 36(1), 55. (1969).

    Article  Google Scholar 

  18. C. Chang, T. Eager, and J. Szekely, in Arc Physics and Weld Pool Behaviour (Cambridge, Welding Institute, 1980), pp. 381–388.

  19. B. Bowman and K. Krüger, Arc Furnace Physics (Verlag Stahleisen Düsseldorf, 2009).

  20. R. Jones, Q. Reynolds, T. Curr, and D. Sager, SAIMM 111(10), 665. (2011).

    Google Scholar 

  21. F. Beaubert and S. Viazzo, Int. J. Heat Fluid Flow 24(4), 512. (2003).

    Article  Google Scholar 

  22. D. Solanki, Implementation and validation of a turbulence model with variable turbulent prandtl number in openfoam. Master’s thesis, Luleå University of Technology (2016).

  23. F. Menter, AIAA J. 30(6), 1657. (1992).

    Article  Google Scholar 

  24. F. Menter, AIAA J. 32(8), 1598. (1994).

    Article  Google Scholar 

  25. H. Moffatt, Phys. Fluids 3(5), 1336. (1991).

    Article  Google Scholar 

  26. Openfoam (2019). https://www.openfoam.com/releases/openfoam-v1912.

  27. C. Greenshields, OpenFOAM User Guide, Version 7 (OpenFOAM Foundation Ltd., 2019).

  28. Freecad. https://github.com/FreeCAD/FreeCAD.

  29. H. Kotzé, SAIMM 120(2), 121. (2019).

    Google Scholar 

  30. Q. Reynolds, Miner. Eng. 63, 35. (2014).

    Article  Google Scholar 

  31. K. Hu, X. Lv, S. Li, W. Lv, B. Song, and K. Han, Metall. Mater. Trans. 49(4), 1963. (2018).

    Article  Google Scholar 

  32. J. Simonson, Engineering Heat Transfer, 2nd edn. (Hampshire, Macmillan Education, 1988), pp. 101–123.

Download references

Acknowledgements

Authors would like to acknowledge the help provided by Dr Quinn Reynolds, Suzanne Roberts, and Dr Johan Heyns towards the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tumelo Makgoale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makgoale, T., Bogaers, A., Zietsman, J. et al. Momentum Transfer from Arc to Slag Bath in a DC Ilmenite Smelting Furnace: A Computational Analysis. JOM 73, 2682–2697 (2021). https://doi.org/10.1007/s11837-021-04792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04792-x

Navigation