Skip to main content
Log in

Selective Laser Melting of Tungsten-Rhenium Alloys

  • Latest Developments in Manufacturing and Recycling of Refractory Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additively manufactured tungsten-rhenium alloys have been compared with pure tungsten in terms of their volumetric density, cracking behavior, microstructure, and hardness. The compositions W-5 wt.%Re and W-25 wt.%Re were explored. Increasing the rhenium content led to an increasing percentage of the theoretical density, with a maximum of 97.6% achieved with 25 wt.% Re. The characteristic cracking behavior of pure tungsten was greatly mitigated for the W-25%Re composition. Electron backscatter diffraction revealed the effect of rhenium in both reducing the average grain size and leading to a more equiaxed grain geometry. Postprocessing heat treatments were explored to heal remaining cracks in W-25%Re samples, producing a more recrystallized microstructure geometry and increasing the density to 98.8% of theoretical and the tensile strength to 659.8 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. K. Deprez, S. Vandenberghe, K. van Audenhaege, J. van Vaerenbergh, and R. van Holen, Int. J. Med. Phys. Res. Pract. 40, 12 (2013)

    Google Scholar 

  2. R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A.S. Kukushkin, A. Loarte, M. Merola, A.S. Naik, and R. Mitteau, J. Nucl. Mater. 438, s48 (2013)

    Article  Google Scholar 

  3. C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, and S. Middlemas, Int. J. Refract. Hard Met. 75, 170 (2018)

    Article  Google Scholar 

  4. B. AlMangour, D. Grzesiak, and J.-M. Yang, J. Mater. Process. Technol. 244, 344 (2017)

    Article  Google Scholar 

  5. A. Iveković, N. Omidvari, B. Vrancken, K. Lietaert, L. Thijs, K. Vanmeensel, J. Vleugels, and J.-P. Kruth, Int. J. Refract. Hard Met. 72, 27 (2018)

    Article  Google Scholar 

  6. A.V. Müller, G. Schlick, R. Neu, C. Anstätt, T. Klimkait, J. Lee, B. Pascher, M. Schmitt, and C. Seidel, Nucl. Mater. 19, 184 (2019)

    Google Scholar 

  7. C. Tan, K. Zhou, W. Ma, B. Attard, P. Zhang, and T. Kuang, Sci. Technol. Adv. Mater. 19, 370 (2018)

    Article  Google Scholar 

  8. D. Wang, C. Yu, X. Zhou, J. Ma, W. Liu, and Z. Shen, Appl. Sci. 7, 430 (2017)

    Article  Google Scholar 

  9. D.-Z. Wang, K.-L. Li, C.-F. Yu, J. Ma, W. Liu, and Z.-J. Shen, Acta Metall. Sin-Engl. 32, 127 (2019)

    Article  Google Scholar 

  10. G.A. Geach and J.E. Hughes, Plansee Proceedings (Pergamon, London, England, 1955), p. 245

    Google Scholar 

  11. S.S. Budagovskiy, V.N. Bykov, M.I. Gavrilyuk, and V.N. Podyachev, NASA (1973)

  12. B. Gludovatz, S. Wurster, A. Hoffmann, and R. Pippan, Int. J. Refract. Hard Met. 28, 674 (2010)

    Article  Google Scholar 

  13. Y. Mutoh, K. Ichikawa, K. Nagata, and M. Takeuchi, J. Mater. Sci. 30, 770 (1995)

    Article  Google Scholar 

  14. W.D. Klopp, P.L. Raffo, and W.R. Witzke, Lewis Research Center (Cleveland, OH, 1966)

    Google Scholar 

  15. P.L. Raffo, J. Less Common Metals 17, 133 (1969)

    Article  Google Scholar 

  16. J.-C. Carlen and B.D. Bryskin, Mater. Manuf. Process. 9, 1087 (1994)

    Article  Google Scholar 

  17. W. Setyawan and R.J. Kurtz, Scr. Mater. 66, 558 (2012)

    Article  Google Scholar 

  18. D.J. Newell, R.P. O’Hara, G.R. Cobb, A.N. Palazotto, M.M. Kirka, L.W. Burggraf, and J.A. Hess, Mater. Sci. Eng. A 764, 138 (2019)

    Article  Google Scholar 

  19. P. Li, Y. Gong, C. Liang, Y. Yang, and M. Cai, Int. J. Adv. Manuf. Tech. 103, 2579 (2019)

    Article  Google Scholar 

  20. C. Martínez, F. Briones, C. Aguilar, N. Araya, I. Iturriza, I. Machado, P. Rojas, Mater. Lett. 273, 271 (2020)

    Article  Google Scholar 

  21. S. Liu and H. Guo, Mater. Lett. 265, 127 (2020)

    Google Scholar 

  22. J. Chen, K. Li, Y. Wang, L. Xing, C. Yu, H. Liu, J. Ma, W. Liu, and Z. Shen, Int. J. Refract. Hard Met. 87, 105 (2020)

    Google Scholar 

  23. B. AlMangour, D. Grzesiak, and J.-M. Yang, Powder Technol. 309, 37 (2017)

    Article  Google Scholar 

  24. Q. Han, R. Mertens, M.L. Montero-Sistiaga, S. Yang, R. Setchi, K. Vanmeensel, B. Van Hooreweder, S.L. Evans, and F. Haiyang, Mater. Sci. Eng. A 732, 228 (2018)

    Article  Google Scholar 

  25. T. Leonhardt, JOM 61, 68 (2009)

    Article  Google Scholar 

  26. T. Loewenhoff, A. Bürger, J. Linke, G. Pintsuk, A. Schmidt, L. Singheiser, and C. Thomser, Phys. Scr. 2011, 14 (2011)

    Google Scholar 

  27. A. Luo, D.L. Jacobson, and K.S. Shin, Int. J. Refract. Hard Met. 10, 107 (1991)

    Article  Google Scholar 

  28. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Science 363, 849 (2019)

    Article  Google Scholar 

  29. S.M. Yusuf and N. Gao, Mater. Sci. Technol. 33, 1269 (2017)

    Article  Google Scholar 

  30. X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, J. Mater. Process. Technol. 222, 33 (2015)

    Article  Google Scholar 

  31. H.V. Atkinson and S. Davies, Metall. Mater. Trans. A 31, 2981 (2000)

    Article  Google Scholar 

  32. S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal. 17, 316 (2011)

    Article  Google Scholar 

  33. J. Braun, L. Kaserer, I. Letofsky-Papst, K.-H. Leitz, H. Kestler, and G. Leichtfried, Int. J. Refract. Hard Met. 92, 105 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Materials and Manufacturing and Aerospace Systems directorates of the Air Force Research Laboratories for sponsorship of this research. The authors also thank the Oak Ridge Institute for Science and Education (ORISE) for the research associateship granted to C.E. The authors are indebted to Steve Glancy, Steven Adler, Edwin Schwalbach, and Eric Payton for much encouragement and enlightening discussions along the development of this material.

Funding

This research was supported by the Materials and Manufacturing and Aerospace Systems directorates of the Air Force Research Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cayla C. Eckley.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the U.S. Air Force, Department of Defense, or U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckley, C.C., Kemnitz, R.A., Fassio, C.P. et al. Selective Laser Melting of Tungsten-Rhenium Alloys. JOM 73, 3439–3450 (2021). https://doi.org/10.1007/s11837-021-04776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04776-x

Navigation