Skip to main content
Log in

Microstructure Evolution and Wear Resistance of Laser-Clad M2 High-Speed Steel Coatings

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Wear is one of the most common failure modes for metals, and therefore the development of low-cost coatings with enhanced wear resistance is of great importance. In the present work, M2 high-speed steel (HSS) coatings, constituted by martensite, carbides, and retained austenite, were prepared by laser cladding on 1045 carbon steel. The microstructure evolution, wear resistance, and wear mechanism of the M2 HSS coatings were systematically investigated. A possible microstructural evolution of the coating during the laser-cladding process is proposed. The prepared M2 HSS coatings exhibit enhanced hardness and wear resistance compared with the 1045 carbon steel substrate. It was found that the wear of the M2 HSS coating is dominated by abrasive wear, adhesive wear, and oxidation wear, while that of the 1045 carbon steel substrate is mainly dominated by oxidation wear. This work provides insight into the morphology evolution and the wear mechanism of the HSS coating prepared by laser cladding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.T. Cao, X.P. Dong, Z. Pan, X.W. Wu, Q.W. Huang, and Y.T. Pei, Mater. Des. 100, 223. (2016).

    Article  Google Scholar 

  2. X. Wang, Z. Zhang, Y. Men, X. Li, Y. Liang, and L. Ren, Opt. Laser Technol. 126, 106136. (2020).

    Article  Google Scholar 

  3. B. AlMangour, D. Grzesiak, and J.M. Yang, J. Mater. Process. Technol. 244, 344. (2017).

    Article  Google Scholar 

  4. F. Fazliana, S.N. Aqida, and I. Ismail, Opt. Laser Technol. 121, 105789. (2020).

    Article  Google Scholar 

  5. F. Wang, C. Li, S. Sun, M. Zeng, C. Liu, Q. Lu, and Y. Wang, JOM 72, 4060. (2020).

    Article  Google Scholar 

  6. C. Schulz, T. Schläfer, J. Plowman, and C. Hall, JOM 72, 4624. (2020).

    Article  Google Scholar 

  7. I. Smurov, Surf. Coat. Technol. 202, 4496. (2008).

    Article  Google Scholar 

  8. S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Nanotechnology 29, 45lt02. (2018).

    Article  Google Scholar 

  9. B. AlMangour, D. Grzesiak, and J.M. Yang, Mater. Des. 96, 150. (2016).

    Article  Google Scholar 

  10. N. Ur Rahman, M.B. de Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve, and G.R.B.E. Römer, Tribol. Int. 130, 52. (2019).

    Article  Google Scholar 

  11. F. Shen, W. Tao, L. Li, Y. Zhou, W. Wang, and S. Wang, Appl. Surf. Sci. 517, 146085. (2020).

    Article  Google Scholar 

  12. F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, and M. Pellizzari, Mat. Sci. Eng. A 753, 109. (2019).

    Article  Google Scholar 

  13. J. Zhao, G. Wang, X. Wang, S. Luo, L. Wang, and Y. Rong, Int. J. Heat Mass Transf. 148, 118990. (2020).

    Article  Google Scholar 

  14. H. Fu, and J. Xing, Materialwiss. Werkst. 35, 578. (2004).

    Article  Google Scholar 

  15. A.S. Chaus, Phys. Met. Metallogr. 106, 82. (2008).

    Article  Google Scholar 

  16. G.F. Sun, K. Wang, R. Zhou, A.X. Feng, and W. Zhang, Mater. Des. 65, 606. (2015).

    Article  Google Scholar 

  17. X. Liu, B. Ma, L. Hu, J.F. Li, F. Qu, G. Le, and X. Li, Metals 9, 96. (2019).

    Article  Google Scholar 

  18. H. Xiao, C. Chen, and M. Zhang, J. Mater. Eng. Perform. 29, 66. (2019).

    Article  Google Scholar 

  19. H.J. Niu, and I.T.H. Chang, Metall. Mater. Trans. A 31, 2615. (2000).

    Article  Google Scholar 

  20. L. Hu, X. Liu, T. Chen, G. Le, J. Li, F. Qu, Y. Zhou, L. Qi, and D. Wang, Vacuum 185, 109996. (2021).

    Article  Google Scholar 

  21. L. Hu, X. Liu, C. Liang, S. Zhao, T. Chen, J. Li, G. Le, F. Qu, Y. Zhou, L. Qi, and D. Wang, Surf. Coat. Tech. 409, 126908. (2021).

    Article  Google Scholar 

  22. Y.Q. Yang, S. Jiang, and X. Zhao, Mater. Sci. Forum 879, 2198. (2016).

    Article  Google Scholar 

  23. L. Bai, G. Le, X. Liu, J. Li, S. Xi, and X. Li, J. Alloys Compd. 745, 716. (2018).

    Article  Google Scholar 

  24. I. Hemmati, V. Ocelík, and J.T.M. De Hosson, J. Laser Appl, ICALEO 2014, 403 (2014).

  25. J.J. Candel, P. Franconetti, and V. Amigó, Rev. Metal. 49, 369. (2013).

    Article  Google Scholar 

  26. B. Zhang, W. Jiang, S. Zhu, X. Liu, and S. Wang, Metall. Mater. Trans. A 51, 684. (2019).

    Article  Google Scholar 

  27. M.R. Ripoll, N. Ojala, C. Katsich, V. Totolin, C. Tomastik, and K. Hradil, Mater. Des. 99, 509. (2016).

    Article  Google Scholar 

  28. S.F. Gnyusov, I.A. Isakin, S.Y. Tarasov, and S.E. Bukhanchenko, Metall. Mater. Trans. A 50, 4307. (2019).

    Article  Google Scholar 

  29. S.A.A. Dilawary, A. Motallebzadeh, Š Houdková, R. Medlin, S. Haviar, F. Lukáč, M. Afzal, and H. Cimenoglu, Wear 404–405, 111. (2018).

    Article  Google Scholar 

  30. J. Arias, M. Cabeza, G. Castro, I. Feijoo, P. Merino, and G. Pena, Weld. Int. 27, 1. (2013).

    Article  Google Scholar 

  31. J. Zeisig, N. Schädlich, L. Giebeler, J. Sander, J. Eckert, U. Kühn, and J. Hufenbach, Wear 382–383, 107. (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Challenge Project (Grant No. TZ2018006-0303-02), the Science and Technology on Surface Physics and Chemistry Laboratory Found (Grant No. XKFZ202005), and the National Natural Science Foundation of China (Grant No. 52001288).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Liu or Li Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 754 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, D., Liu, X., Hu, L. et al. Microstructure Evolution and Wear Resistance of Laser-Clad M2 High-Speed Steel Coatings. JOM 73, 4279–4288 (2021). https://doi.org/10.1007/s11837-021-04772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04772-1

Navigation