Abstract
Mussels, which are marine creatures, stick strongly to various substrates underwater using foot proteins rich in amino acids like L-3,4-dihydroxyphenylalanine (DOPA). This stimulates the synthesis of catechol-containing polymers that possess strong underwater adhesion; consequently, the mechanism is ascribed solely to catechol functionality. However, polymers' adsorption state and hence adhesion are a function of hydration and intramolecular interactions, insights into which are lacking. Here, we investigate dilute solution behavior of polyester adhesive polymers containing linoleamide group for hydrophobicity (H) and catechol group to mimic DOPA functionality (D). Higher D unit content containing polymers hydrate more through catechol hydroxyl groups and explore a wide range of conformational space. Neither ester oxygen nor nitrogen atoms in the backbone show any hydration. Interestingly, all polymers show hydrophobic collapse with extent/structure depending upon content of H unit. Hydrophobic collapse due to enthalpic interactions and chain entropy enhancement via catechol group provide insights into polymers' un-adsorbed state.
This is a preview of subscription content, access via your institution.






References
K. Kamino, Mar. Biotechnol. 10, 111. (2008).
R. J. Stewart, T. C. Ransom, and V. Hlady, J. Polym. Sci., Part B: Polym. Phys. 49, 757 (2011).
J.H. Waite, J. Exp. Biol. 220, 517. (2017).
H. Zhao, N.B. Robertson, S.A. Jewhurst, and J.H. Waite, J. Biol. Chem. 281, 11090. (2006).
Z.A. Levine, M.V. Rapp, W. Wei, R.G. Mullen, C. Wu, G.H. Zerze, J. Mittal, J.H. Waite, J.N. Israelachvili, and J.-E. Shea, PNAS USA 113, 4332. (2016).
W. Wei, J. Yu, C. Broomell, J.N. Israelachvili, and J.H. Waite, J. Am. Chem. Soc. 135, 377. (2013).
J. Yu, Y. Kan, M. Rapp, E. Danner, W. Wei, S. Das, D.R. Miller, Y. Chen, J.H. Waite, and J.N. Israelachvili, PNAS USA 110, 15680. (2013).
H. Lee, N.F. Scherer, and P.B. Messersmith, PNAS USA 103, 12999. (2006).
W. Wei, L. Petrone, Y. Tan, H. Cai, J.N. Israelachvili, A. Miserez, and J.H. Waite, Adv. Funct. Mater. 26, 3496. (2016).
T. Utzig, P. Stock, and M. Valtiner, Angew. Chem Int. 128, 9676. (2016).
P. Das, and M. Reches, Nanoscale 8, 15309. (2016).
Y. Li, H. Liu, T. Wang, M. Qin, Y. Cao, and W. Wang, ChemPhysChem 18, 1466. (2017).
J. Wang, M.N. Tahir, M. Kappl, W. Tremel, N. Metz, M. Barz, P. Theato, and H.J. Butt, Adv. Mater. 20, 3872. (2008).
S.A. Mian, L.C. Saha, J. Jang, L. Wang, X. Gao, and S. Nagase, J. Phys. Chem. C. 114, 20793. (2010).
S.A. Mian, X. Gao, S. Nagase, and J. Jang, Theor. Chem. Acc. 130, 333. (2011).
P. Redfern, P. Zapol, L. Curtiss, T. Rajh, and M. Thurnauer, J. Phys. Chem. B. 107, 11419. (2003).
I.-C. Yeh, J.L. Lenhart, J.A. Orlicki, and B.C. Rinderspacher, J. Phys. Chem. B. 123, 7024. (2019).
I.-C. Yeh, J.L. Lenhart, and B.C. Rinderspacher, J. Phys. Chem. C. 119, 7721. (2015).
G. Westwood, T.N. Horton, and J.J. Wilker, Macromolecules 40, 3960. (2007).
H. Xu, J. Nishida, W. Ma, H. Wu, M. Kobayashi, H. Otsuka, and A. Takahara, ACS Macro Lett. 1, 457. (2012).
J. Yang, M.A.C. Stuart, and M. Kamperman, Chem. Soc. Rev. 43, 8271. (2014).
K. Kendall, J. Adhes. 5, 179. (1973).
S. Kaur, A. Narayanan, S. Dalvi, Q. Liu, A. Joy, A. Dhinojwala, and A.C.S. Cent, Sci. 4, 1420. (2018).
A. Narayanan, S. Kaur, C. Peng, D. Debnath, K. Mishra, Q. Liu, A. Dhinojwala, and A. Joy, Biomacromol 20, 2577. (2019).
Material Studio™, by Dassault Systèmes BIOVIA, UK (Accelrys®), (License purchased by The University of Akron).
L. Martínez, R. Andrade, E.G. Birgin, and J.M. Martínez, J. Comput. Chem. 30, 2157. (2009).
W. Damm, A. Frontera, J. Tirado-Rives, and W.L. Jorgensen, J. Comput. Chem. 18, 1955. (1997).
W.L. Jorgensen, D.S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225. (1996).
H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem. 91, 6269. (1987).
S. Plimpton, J. Comput. Phys. 117, 1. (1995).
M. Rubinstein, and R. H. Colby, Polymer Physics; Oxford university press New York, 2003; Vol. 23.
D. Chandler, and J.K. Percus, Phys. Today. 41, 114. (1988).
A. Luzar, and D. Chandler, J. Chem. Phys. 98, 8160. (1993).
N. Kumar, S. Singla, M.C. Wilson, S. Kaur, S. Bekele, M. Tsige, and A. Dhinojwala, J. Phys. Chem. C. 123, 29729. (2019).
D. Chandler, Nature 437, 640. (2005).
G. Williams, and D.C. Watts, J. Chem. Soc. Faraday Trans. 66, 80. (1970).
A. Dupré, and P. Dupré, Théorie Mécanique De La Chaleur; Gauthier-Villars, 1869.
N.B. Rego, E. Xi, and A.J. Patel, J. Am. Chem. Soc. 141, 2080. (2019).
S. Vembanur, A.J. Patel, S. Sarupria, and S. Garde, J. Phys. Chem. B. 117, 10261. (2013).
Acknowledgements
We acknowledge the financial support from the National Science Foundation (NSF) (grant # DMR-1912329, DMR-1610483 and DMR-1508440). The authors would like to thank Amal Narayan and Sukhmanjot Kaur for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mokarizadeh, A.H., Kumar, N., Joy, A. et al. Single Chain Hydration and Dynamics of Mussel-Inspired Soybean-Based Adhesive. JOM 73, 2460–2470 (2021). https://doi.org/10.1007/s11837-021-04756-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-021-04756-1