Skip to main content

Single Chain Hydration and Dynamics of Mussel-Inspired Soybean-Based Adhesive

Abstract

Mussels, which are marine creatures, stick strongly to various substrates underwater using foot proteins rich in amino acids like L-3,4-dihydroxyphenylalanine (DOPA). This stimulates the synthesis of catechol-containing polymers that possess strong underwater adhesion; consequently, the mechanism is ascribed solely to catechol functionality. However, polymers' adsorption state and hence adhesion are a function of hydration and intramolecular interactions, insights into which are lacking. Here, we investigate dilute solution behavior of polyester adhesive polymers containing linoleamide group for hydrophobicity (H) and catechol group to mimic DOPA functionality (D). Higher D unit content containing polymers hydrate more through catechol hydroxyl groups and explore a wide range of conformational space. Neither ester oxygen nor nitrogen atoms in the backbone show any hydration. Interestingly, all polymers show hydrophobic collapse with extent/structure depending upon content of H unit. Hydrophobic collapse due to enthalpic interactions and chain entropy enhancement via catechol group provide insights into polymers' un-adsorbed state.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. K. Kamino, Mar. Biotechnol. 10, 111. (2008).

    Article  Google Scholar 

  2. R. J. Stewart, T. C. Ransom, and V. Hlady, J. Polym. Sci., Part B: Polym. Phys. 49, 757 (2011).

  3. J.H. Waite, J. Exp. Biol. 220, 517. (2017).

    Article  Google Scholar 

  4. H. Zhao, N.B. Robertson, S.A. Jewhurst, and J.H. Waite, J. Biol. Chem. 281, 11090. (2006).

    Article  Google Scholar 

  5. Z.A. Levine, M.V. Rapp, W. Wei, R.G. Mullen, C. Wu, G.H. Zerze, J. Mittal, J.H. Waite, J.N. Israelachvili, and J.-E. Shea, PNAS USA 113, 4332. (2016).

    Article  Google Scholar 

  6. W. Wei, J. Yu, C. Broomell, J.N. Israelachvili, and J.H. Waite, J. Am. Chem. Soc. 135, 377. (2013).

    Article  Google Scholar 

  7. J. Yu, Y. Kan, M. Rapp, E. Danner, W. Wei, S. Das, D.R. Miller, Y. Chen, J.H. Waite, and J.N. Israelachvili, PNAS USA 110, 15680. (2013).

    Article  Google Scholar 

  8. H. Lee, N.F. Scherer, and P.B. Messersmith, PNAS USA 103, 12999. (2006).

    Article  Google Scholar 

  9. W. Wei, L. Petrone, Y. Tan, H. Cai, J.N. Israelachvili, A. Miserez, and J.H. Waite, Adv. Funct. Mater. 26, 3496. (2016).

    Article  Google Scholar 

  10. T. Utzig, P. Stock, and M. Valtiner, Angew. Chem Int. 128, 9676. (2016).

    Article  Google Scholar 

  11. P. Das, and M. Reches, Nanoscale 8, 15309. (2016).

    Article  Google Scholar 

  12. Y. Li, H. Liu, T. Wang, M. Qin, Y. Cao, and W. Wang, ChemPhysChem 18, 1466. (2017).

    Article  Google Scholar 

  13. J. Wang, M.N. Tahir, M. Kappl, W. Tremel, N. Metz, M. Barz, P. Theato, and H.J. Butt, Adv. Mater. 20, 3872. (2008).

    Article  Google Scholar 

  14. S.A. Mian, L.C. Saha, J. Jang, L. Wang, X. Gao, and S. Nagase, J. Phys. Chem. C. 114, 20793. (2010).

    Article  Google Scholar 

  15. S.A. Mian, X. Gao, S. Nagase, and J. Jang, Theor. Chem. Acc. 130, 333. (2011).

    Article  Google Scholar 

  16. P. Redfern, P. Zapol, L. Curtiss, T. Rajh, and M. Thurnauer, J. Phys. Chem. B. 107, 11419. (2003).

    Article  Google Scholar 

  17. I.-C. Yeh, J.L. Lenhart, J.A. Orlicki, and B.C. Rinderspacher, J. Phys. Chem. B. 123, 7024. (2019).

    Article  Google Scholar 

  18. I.-C. Yeh, J.L. Lenhart, and B.C. Rinderspacher, J. Phys. Chem. C. 119, 7721. (2015).

    Article  Google Scholar 

  19. G. Westwood, T.N. Horton, and J.J. Wilker, Macromolecules 40, 3960. (2007).

    Article  Google Scholar 

  20. H. Xu, J. Nishida, W. Ma, H. Wu, M. Kobayashi, H. Otsuka, and A. Takahara, ACS Macro Lett. 1, 457. (2012).

    Article  Google Scholar 

  21. J. Yang, M.A.C. Stuart, and M. Kamperman, Chem. Soc. Rev. 43, 8271. (2014).

    Article  Google Scholar 

  22. K. Kendall, J. Adhes. 5, 179. (1973).

    Article  Google Scholar 

  23. S. Kaur, A. Narayanan, S. Dalvi, Q. Liu, A. Joy, A. Dhinojwala, and A.C.S. Cent, Sci. 4, 1420. (2018).

    Google Scholar 

  24. A. Narayanan, S. Kaur, C. Peng, D. Debnath, K. Mishra, Q. Liu, A. Dhinojwala, and A. Joy, Biomacromol 20, 2577. (2019).

    Article  Google Scholar 

  25. Material Studio™, by Dassault Systèmes BIOVIA, UK (Accelrys®), (License purchased by The University of Akron).

  26. L. Martínez, R. Andrade, E.G. Birgin, and J.M. Martínez, J. Comput. Chem. 30, 2157. (2009).

    Article  Google Scholar 

  27. W. Damm, A. Frontera, J. Tirado-Rives, and W.L. Jorgensen, J. Comput. Chem. 18, 1955. (1997).

    Article  Google Scholar 

  28. W.L. Jorgensen, D.S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225. (1996).

    Article  Google Scholar 

  29. H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem. 91, 6269. (1987).

    Article  Google Scholar 

  30. S. Plimpton, J. Comput. Phys. 117, 1. (1995).

    Article  Google Scholar 

  31. M. Rubinstein, and R. H. Colby, Polymer Physics; Oxford university press New York, 2003; Vol. 23.

  32. D. Chandler, and J.K. Percus, Phys. Today. 41, 114. (1988).

    Article  Google Scholar 

  33. A. Luzar, and D. Chandler, J. Chem. Phys. 98, 8160. (1993).

    Article  Google Scholar 

  34. N. Kumar, S. Singla, M.C. Wilson, S. Kaur, S. Bekele, M. Tsige, and A. Dhinojwala, J. Phys. Chem. C. 123, 29729. (2019).

    Article  Google Scholar 

  35. D. Chandler, Nature 437, 640. (2005).

    Article  Google Scholar 

  36. G. Williams, and D.C. Watts, J. Chem. Soc. Faraday Trans. 66, 80. (1970).

    Article  Google Scholar 

  37. A. Dupré, and P. Dupré, Théorie Mécanique De La Chaleur; Gauthier-Villars, 1869.

  38. N.B. Rego, E. Xi, and A.J. Patel, J. Am. Chem. Soc. 141, 2080. (2019).

    Article  Google Scholar 

  39. S. Vembanur, A.J. Patel, S. Sarupria, and S. Garde, J. Phys. Chem. B. 117, 10261. (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Science Foundation (NSF) (grant # DMR-1912329, DMR-1610483 and DMR-1508440). The authors would like to thank Amal Narayan and Sukhmanjot Kaur for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Tsige.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mokarizadeh, A.H., Kumar, N., Joy, A. et al. Single Chain Hydration and Dynamics of Mussel-Inspired Soybean-Based Adhesive. JOM 73, 2460–2470 (2021). https://doi.org/10.1007/s11837-021-04756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04756-1