Skip to main content
Log in

Electrochemical Properties of Mn-Doped Nanosphere LiFePO4

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

LiFePO4 with an olivine structure has attracted extensive interest as a cathode material for rechargeable lithium batteries. However, due to the inherent low ionic and low conductivity of LiFePO4, its electrochemical performance still has a lot of room for improvement. LiMnxFe1−xPO4 (x = 0, 0.10, 0.18, 0.50) materials with different Mn doping amounts were synthesized by a solvothermal method. The experimental results show that the initial discharge specific capacities of LiMn0.1Fe0.9PO4 at 0.1 C and 0.5 C are 142.8 mAh g−1 and 123.4 mAh g−1, respectively. The synthesized olivine LiMn0.1Fe0.9PO4/C composite has better electrochemical properties. The initial discharge capacity of the composite reaches 151.9 mAh g−1 at 0.1 C rate and 105.1 mAh g−1 at 2 C rate. The improvement of electrochemical performance is attributed to the columnar effect of the Mn-stabilized crystal structure and the lithium-ion diffusion rate caused by Mn doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Chen, Q. Tang, X. Chen, and L. Tan, New J. Chem. 39, 9782. (2015).

    Article  Google Scholar 

  2. C. Ouyang, S. Shi, Z. Wang, X. Huang, and L. Chen, Phys. Rev. B, 69, 104303 (2004).

  3. G.K.P. Dathar, D. Sheppard, K.J. Stevenson, and G. Henkelman, Chem. Mater. 23, 4032. (2011).

    Article  Google Scholar 

  4. B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, and L.F. Nazar, Nat. Mater. 6, 749. (2007).

    Article  Google Scholar 

  5. Q. Zhao, Y. Zhang, Y. Meng, Y. Wang, J. Ou, Y. Guo, and D. Xiao, Nano Energy 34, 408. (2017).

    Article  Google Scholar 

  6. L.H. Hu, B. Wu, F.Y. Lin, C. Te, A.N. Khlobystov, and L.J. Li, Nat. Commun. 4, 1687. (2013).

    Article  Google Scholar 

  7. F.X. Ye, W.X. Shao, X.C. Ye, M.X. Liu, S.N. Li, Y.X. Xie, P.Y. Bian, X.Y. Wang, and L. Liu, J. Nanoelectron. Electron. Opto. 15, 1184. (2020).

    Google Scholar 

  8. S.Y. Chung, and Y.M. Chiang, Electrochem. Solid-State Lett. 6, 278. (2003).

    Article  Google Scholar 

  9. I.D. Johnson, E. Blagovidova, P.A. Dingwall, D.J.L. Brett, P.R. Shearing, and J.A. Darr, J. Power Sour. 326, 476. (2016).

    Article  Google Scholar 

  10. D. Wang, H. Li, S. Shi, X. Huang, and L. Chen, Electrochim. Acta 50, 2955. (2005).

    Article  Google Scholar 

  11. X.W. Nie, M.D. Cai, and S. Cai, Int. J. Refract. Met. H. 98, 105568. (2021).

  12. M.R. Yang, and W.H. Ke, J. Electrochem. Soc. 155, A729. (2008).

    Article  Google Scholar 

  13. C.Y. Chiang, H.C. Su, P.J. Wu, H.J. Liu, C.W. Hu, N. Sharma, V.K. Peterson, H.W. Hsieh, Y.F. Lin, W.C. Chou, C.H. Lee, J.F. Lee, and B.Y. Shew, J. Phys. Chem. C 116, 24424. (2012).

    Article  Google Scholar 

  14. S.Y. Chung, J.T. Bloking, and Y.M. Chiang, Nat. Mater. 1, 123. (2002).

    Article  Google Scholar 

  15. M. Wagemaker, B.L. Ellis, D. Lützenkirchen-Hecht, F.M. Mulder, and L.F. Nazar, Chem. Mater. 20, 6313. (2008).

    Article  Google Scholar 

  16. B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, and X.S. Zhao, Nanoscale 6, 986. (2014).

    Article  Google Scholar 

  17. J. Barker, M.Y. Saidi, and J.L. Swoyer, Electrochem Solid-State Lett. 6, 53. (2003).

    Article  Google Scholar 

  18. A. Örnek, and O. Efe, Electrochim. Acta 166, 338. (2015).

    Article  Google Scholar 

  19. H. Li, Z. Wang, L. Chen, and X. Huang, Adv. Mater. 21, 4593. (2009).

    Article  Google Scholar 

  20. N. Meethong, H.Y.S. Huang, W.C. Carter, and Y.M. Chiang, Electrochem. Solid State Lett. 10, A134. (2007).

    Article  Google Scholar 

  21. Y. Mi, C. Yang, Z. Zuo, L. Qi, C. Tang, W. Zhang, and H. Zhou, Electrochim. Acta 176, 642. (2015).

    Article  Google Scholar 

  22. J. Lee, P. Kumar, B.M. Moudgil, and R.K. Singh, Solid State Ionics 231, 18. (2013).

    Article  Google Scholar 

  23. J. Chen, X. Wang, Z. Ma, and G. Shao, Ionics 21, 2701. (2015).

    Article  Google Scholar 

  24. D. Li, Y. Huang, N. Sharma, Z. Chen, D. Jia, and Z. Guo, Phys. Chem. Chem. Phys. 14, 3634. (2012).

    Article  Google Scholar 

  25. Y.D. Cho, G.T.K. Fey, and H.M. Kao, J. Solid State Electrochem. 12, 815. (2008).

    Article  Google Scholar 

  26. F. Mao, D. Wu, Z. Zhou, and S. Wang, Ionics 20, 1665. (2014).

    Article  Google Scholar 

  27. N. Tatsuya, S. Kiyotaka, and O. Mitsuru, Power Sources 174, 435. (2007).

    Article  Google Scholar 

  28. Y. Gu, W. Liu, L. Wang, G. Li, and Y. Yang, Cryst. Eng. Comm. 15, 4865. (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Natural Science Foundation of Hunan Province (Project No.: 2019JJ70050) and Scientific Research Project of colleges and universities in Hunan Province (Project No.: 19C0557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Nie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Xiong, J. Electrochemical Properties of Mn-Doped Nanosphere LiFePO4. JOM 73, 2525–2530 (2021). https://doi.org/10.1007/s11837-021-04753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04753-4

Navigation