Skip to main content
Log in

Homogenized Macroscale Model and Morphological Microscale Model to Understand the Varying Mechanical Properties of Scar Tissue of Hip Capsule Ligaments Grown Around Different Implant Materials

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 25 March 2024

This article has been updated

Abstract

In total hip arthroplasty, the hip joint is replaced by artificial materials. The fibrous tissue that re-forms around the hip joint after surgery plays an important role in joint stability. Here, the morphological and mechanical properties of the scar tissue that forms around implants composed of either polymer and metal or ceramic are compared with native tissue removed during an initial total hip arthroplasty. Immunohistological analyses of the samples revealed different hierarchical structures of the tissues over three scales: the fiber, the fascicle, and tissue scales. At the tissue scale, microtensile tests were performed on millimetric samples and their nonlinear elastic responses identified by either an exponential law or Ogden third-order constitutive model. At the fiber scale, a patient-specific microscale finite element model was used ,including the measured morphological parameters and distinct Ogden constitutive models for the fiber and matrix composed of a mixture of fibers in ground substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. R.J. van Arkel, K.C. Ng, S.K. Muirhead-Allwood, R.T.J. Jeffers, J. Bone Joint Surg. 100(14), 1–10 (2018)

    Google Scholar 

  2. J. Parvizi, L. Sedel, M.J. Dunbar, Clin. Orthop. Relat. Res. 476(4), 678–683 (2018)

    Article  Google Scholar 

  3. D. Hannouche, F. Devriez, J. Delambre, F. Zadegan, I. Tourabaly, L. Sedel, S. Chevret, R. Nizard, J. Bone Joint Surg. Am. 474, 520–527 (2016)

    Google Scholar 

  4. K.J. Bozic, S.M. Kurtz, E. Lau, K. Ong, T.P. Vail, D.J. Berry, J. Bone Joint Surg. Am. 91(1), 128–133 (2009)

    Article  Google Scholar 

  5. M. Gold, A. Munjal, M. Varacallo. StatPearls (2020)

  6. J. Hewitt, F. Guilak, R. Glisson, T. Parker Vail, J. Orthop. Res. 19, 359–364 (2001)

    Article  Google Scholar 

  7. J.D. Hewitt, R.R. Glisson, F. Guilak, J. Arthroplasty 17, 82 (2001)

    Article  Google Scholar 

  8. C. Vergari, P. Pourcelot, L. Holden, G. Gerard, B. Ravary-Plumioen, P. Laugier, D. Mitton, N. Crevier-Denoix, J. Biomech. 44, 719–724 (2011)

    Article  Google Scholar 

  9. A.M. Swedberg, S.P. Reese, B.J. Ellis, S.A. Maas, J.A. Weiss, J. Biomech. 47, 3201–3209 (2014)

    Article  Google Scholar 

  10. G.A. Holzapfel, Biomechanics of Soft Tissue. Handbook of Material Behavior (Academic, Cambridge, 2000).

    Google Scholar 

  11. N. Famaey, J.V. Sloten, Soft tissue modelling for applications in virtual surgery and surgical robotics. Comput. Methods Biomech. Biomed. Eng. 11(4), 351–366 (2008)

    Article  Google Scholar 

  12. R.C. Hibbeler, Mechanics of Materials (Pearson Prentice Hall, Hoboken, 2011).

    Google Scholar 

  13. G. Chagnon, M. Rebouah, D. Favier, J. Mech. Phys. Solids 120, 129–160 (2014)

    MathSciNet  Google Scholar 

  14. R.L. Armentano, J.G. Barra, J. Levenson, A. Simon, R.H. Pichel, Circ. Res. 76(3), 468–478 (1995)

    Article  Google Scholar 

  15. G.A. Holzapfel, R. Eberlein, P. Wriggers, H.W. Weizsäcker, Comput. Methods Appl. Mech. Eng. 11(4), 351–366 (1996)

    Google Scholar 

  16. D. Garcia-Gonzalez, A. Jérusalem, S. Garzon-Hernandez, R. Zaera, A. Arias, J. Mech. Phys. Solids 112, 209 (2017)

    Article  Google Scholar 

  17. R.W. Odgen, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 326(1567), 565–584 (1972)

    Google Scholar 

  18. M. Merola, S. Affatato, Materials 12(3), 495 (2019)

    Article  Google Scholar 

  19. J.A. Kiernan, Biotech. Histochem. 93, 133–148 (2018)

    Article  Google Scholar 

  20. J. Heribert, M.D. Schaefery, Am. J. Clin. Pathol. 28(6), 646 (1957)

    Article  Google Scholar 

  21. H. Choi, R. Vito, J. Biomech. Eng. 112(2), 153–159 (1990)

    Article  Google Scholar 

  22. F. Gao, L. Han, Comput. Optim. Appl. 51, 259–277 (2010)

    Article  Google Scholar 

  23. S. Bhogle, G. Mistri, B. Vesper, S. Lacey, J. Radosevich, M. Colvard, E. Budyn, CMAME 314, 19–45 (2017)

    Google Scholar 

  24. M. Smith. ABAQUS/Theory Manual, Version 6.6, Large strain elasticity. Dassault Systèmes Simulia Corp., United States (2009)

  25. H.D. Martin, A. Savage, B.A. Braly, I.J. Palmer, D.P. Beall, B.T. Kelly, Epub 24(2), 188–95 (2008)

    Article  Google Scholar 

  26. M.S. Hefzy, E.S. Grood, J. Biomech. Eng. 105(2), 145–153 (1983)

    Article  Google Scholar 

  27. K.W. Simbeya, N. Shrive, C.B Frank, J.R. Matyas. A micromechanical finite element model of rabbit medial collateral ligament. Recent advances in computer methods in biomechanics and biomedical engineering, pp. 240–249 (1992)

  28. J.A. Weiss, J.C. Gardiner, C. Bonifasi-Lista, J. Biomech. 35, 943–950 (2002)

    Article  Google Scholar 

  29. K.J. Stewart, D.R. Pedersen, J.J. Callaghan, T.D. Brown, Orthop. J. 24, 1–8 (2004)

    Google Scholar 

  30. C. Wex, S. Arndt, A. Stoll, C. Bruns, Y. Kupriyanova, Biomed. Eng. Biomed. Technik 60(6), 577–592 (2015)

    Google Scholar 

  31. K. Laksari, M. Shafieian, K. Darvish, J. Biomech. 45(4), 642–646 (2012)

    Article  Google Scholar 

  32. C.F. Guimarães, L. Gasperini, A.P. Marques, R.L. Reis, Nat. Rev. Mater. 5, 351–370 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from Agence Nationale de la recherche et de la Technologie (ANRT) CIFRE Award No. 2018/1806 in collaboration with the company CC CONTACT. The third author is now at UMS 3750, Pierre Gilles de Gennes Institute, Paris, France. The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Budyn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avgeri, A., Sanders, S., Cinquin, B. et al. Homogenized Macroscale Model and Morphological Microscale Model to Understand the Varying Mechanical Properties of Scar Tissue of Hip Capsule Ligaments Grown Around Different Implant Materials. JOM 73, 2377–2389 (2021). https://doi.org/10.1007/s11837-021-04737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04737-4

Navigation