Partitioning of Solutes at Crystal Defects in Borides After Creep and Annealing in a Polycrystalline Superalloy

Abstract

We have investigated the partitioning of solutes at crystal defects in intergranular Cr-rich M2B borides after creep at 850°C/185MPa and annealing at 850°C for approximately 3000 h in a polycrystalline nickel-based superalloy. Borides were found to coarsen in both cases, with the borides after creep being the thickest (800–1100 nm), compared to borides annealed in the absence of an external applied load (400–600 nm). Transmission electron microscopy revealed that the coarsened borides have either a tetragonal I4/mcm structure, or an orthorhombic Fddd, with those two structures coexisting in a single particle. The presence of a very high density of planar faults was systematically observed within the coarsened borides. The faults were correlated with chemical fluctuations of B and Cr, revealed by atom probe tomography. In addition, partitioning of Ni and Co was observed at dislocations within the borides after creep, providing insights into the deformation of borides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Kolb, L.P. Freund, F. Fischer, I. Povstugar, S.K. Makineni, B. Gault, D. Raabe, J. Müller, E. Spiecker, S. Neumeier, and M. Göken, Acta Mater. 145, 247. (2018).

    Article  Google Scholar 

  2. 2.

    P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, and R.C. Reed, Acta Mater. 103, 688. (2016).

    Article  Google Scholar 

  3. 3.

    D. Tytko, P.-P. Choi, J. Klöwer, A. Kostka, G. Inden, and D. Raabe, Acta Mater. 60, 1731. (2012).

    Article  Google Scholar 

  4. 4.

    T. Alam, P.J. Felfer, M. Chaturvedi, L.T. Stephenson, M.R. Kilburn, and J.M. Cairney, Metall. Mater. Trans. A 43, 2183. (2012).

    Article  Google Scholar 

  5. 5.

    X.B. Hu, H.Y. Niu, X.L. Ma, A.R. Oganov, C.A.J. Fisher, N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, J.F. Liu, and Y. Ikuhara, Acta Mater. 149, 274. (2018).

    Article  Google Scholar 

  6. 6.

    P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, and R.C. Reed, Acta Mater. 125, 156. (2017).

    Article  Google Scholar 

  7. 7.

    M. Thuvander and K. Stiller, Mater. Sci. Eng. A 281, 96. (2000).

    Article  Google Scholar 

  8. 8.

    X.B. Hu, Y.L. Zhu, and X.L. Ma, Acta Mater. 68, 70. (2014).

    Article  Google Scholar 

  9. 9.

    H.R. Zhang, O.A. Ojo, and M.C. Chaturvedi, Scr. Mater. 58, 167. (2008).

    Article  Google Scholar 

  10. 10.

    M.J. Kaufman and V.I. Levit, Philos. Mag. Lett. 88, 259. (2008).

    Article  Google Scholar 

  11. 11.

    T.J. Garosshen, T.D. Tillman, and G.P. McCarthy, Metall. Trans. A 18, 69. (1987).

    Article  Google Scholar 

  12. 12.

    L. Xiao, M.C. Chaturvedi, and D. Chen, J. Mater. Eng. Perform. 14, 528. (2005).

    Article  Google Scholar 

  13. 13.

    B.C. Yan, J. Zhang, and L.H. Lou, Mater. Sci. Eng. A 474, 39. (2008).

    Article  Google Scholar 

  14. 14.

    P. Kontis, E. Alabort, D. Barba, D.M. Collins, A.J. Wilkinson, and R.C. Reed, Acta Mater. 124, 489. (2017).

    Article  Google Scholar 

  15. 15.

    P. Kontis, A. Kostka, D. Raabe, and B. Gault, Acta Mater. 166, 158. (2019).

    Article  Google Scholar 

  16. 16.

    H.L. Ge, J.D. Liu, S.J. Zheng, Y.T. Zhou, Q.Q. Jin, X.H. Shao, B. Zhang, Y.Z. Zhou, and X.L. Ma, Mater. Lett. 235, 232. (2019).

    Article  Google Scholar 

  17. 17.

    R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, and M.J. Mills, Acta Mater. 59, 7325. (2011).

    Article  Google Scholar 

  18. 18.

    K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida, Scri. Mater. 61, 612. (2009).

    Article  Google Scholar 

  19. 19.

    E. Cadel, D. Lemarchand, S. Chambreland, and D. Blavette, Acta Mater. 50, 957. (2002).

    Article  Google Scholar 

  20. 20.

    Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, and Q. Feng, Acta Mater. 176, 109. (2019).

    Article  Google Scholar 

  21. 21.

    P. Kontis, Scr. Mater. 194, 113626. (2021).

    Article  Google Scholar 

  22. 22.

    L. Lilensten, S. Antonov, B. Gault, S. Tin, and P. Kontis, Acta Mater. 202, 232. (2021).

    Article  Google Scholar 

  23. 23.

    K. Roar, MacTempas (n.d.).

  24. 24.

    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131. (2007).

    Article  Google Scholar 

  25. 25.

    R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, and M.K. Miller, Scr. Mater. 51, 327. (2004).

    Article  Google Scholar 

  26. 26.

    F.R.N. Nabarro, Phys. Soc. Lond., 75 (1948).

  27. 27.

    C. Herring, Scr. Metall. 5, 273. (1971).

    Article  Google Scholar 

  28. 28.

    R.L. Coble, J. Appl. Phys. 34, 1679. (1963).

    Article  Google Scholar 

  29. 29.

    S.V. Prikhodko and A.J. Ardell, Acta Mater. 51, 5001. (2003).

    Article  Google Scholar 

  30. 30.

    A.J. Ardell and S.V. Prikhodko, Acta Mater. 51, 5013. (2003).

    Article  Google Scholar 

  31. 31.

    J.K. Tien and R.P. Gamble, Metall. Trans. 2, 1663. (1971).

    Google Scholar 

  32. 32.

    H. Choe and D.C. Dunand, Mater. Sci. Eng. A 384, 184. (2004).

    Article  Google Scholar 

  33. 33.

    P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, and B. Gault, Scr. Mater. 147, 59. (2018).

    Article  Google Scholar 

  34. 34.

    S. Antonov, B. Li, B. Gault, and Q. Tan, Scr. Mater. 186, 208. (2020).

    Article  Google Scholar 

  35. 35.

    W.D. Summers, E. Alabort, P. Kontis, F. Hofmann, and R.C. Reed, Mater High Temp. 33, 338. (2016).

    Article  Google Scholar 

  36. 36.

    X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, and H.Q. Ye, Metall. Mater. Trans. A 38, 3014. (2007).

    Article  Google Scholar 

  37. 37.

    I. Goldfarb, W.D. Kaplan, S. Ariely, and M. Bamberger, Philos. Mag. A 72, 963. (1995).

    Article  Google Scholar 

  38. 38.

    X.B. Hu, Y.L. Zhu, X.H. Shao, H.Y. Niu, L.Z. Zhou, and X.L. Ma, Acta Mater. 100, 64. (2015).

    Article  Google Scholar 

  39. 39.

    A.G. Fitzgerald and M. Mannami, Proc. R. Soc. Lond. A 293, 169. (1966).

    Article  Google Scholar 

  40. 40.

    M.J. Whelan and P.B. Hirsch, Philos. Mag. A 2, 1121. (1957).

    Article  Google Scholar 

  41. 41.

    F. Meisenkothen, E.B. Steel, T.J. Prosa, K.T. Henry, and R. Prakash Kolli, Ultramicroscopy 159, 101. (2015).

    Article  Google Scholar 

  42. 42.

    B. Gault, D. Saxey, M.W. Ashton, S.B. Sinnott, A.N. Chiaramonti, M.P. Moody, and D.K. Schreiber, New J. Phys. 18, 033031. (2016).

    Article  Google Scholar 

  43. 43.

    Z. Peng, F. Vurpillot, P.-P. Choi, Y. Li, D. Raabe, and B. Gault, Ultramicroscopy 189, 54. (2018).

    Article  Google Scholar 

  44. 44.

    B. Jiang, C. Chen, X. Wang, H. Wang, W. Wang, H. Ye, and K. Du, Acta Mater. 165, 459. (2019).

    Article  Google Scholar 

  45. 45.

    X.B. Hu, Y.L. Zhu, N.C. Sheng, and X.L. Ma, Sci. Rep. 4, 7367. (2014).

    Article  Google Scholar 

  46. 46.

    M.C. Paulisch, N. Wanderka, G. Miehe, D. Mukherji, J. Rösler, and J. Banhart, J. Alloys Compd. 569, 82. (2013).

    Article  Google Scholar 

  47. 47.

    A.K. da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe, Acta Mater. 124, 305. (2017).

    Article  Google Scholar 

  48. 48.

    M. Kuzmina, M. Herbig, D. Ponge, S. Sandlöbes, and D. Raabe, Science 349, 1080. (2015).

    Article  Google Scholar 

  49. 49.

    X. Wu, S.K. Makineni, P. Kontis, G. Dehm, D. Raabe, B. Gault, and G. Eggeler, Materialia 4, 109. (2018).

    Article  Google Scholar 

  50. 50.

    S. Lartigue-Korinek, M. Walls, N. Haneche, L. Cha, L. Mazerolles, and F. Bonnet, Acta Mater. 98, 297. (2015).

    Article  Google Scholar 

Download references

Acknowledgements

P.K. thanks Siemens Industrial Turbomachinery for provision of the material and performing the creep and annealing tests. Uwe Tezins and Andreas Sturm for their support to the FIB and APT facilities at MPIE. L.L. thanks P. Vermaut for fruitful discussions. We are grateful for the financial support from the Max-Planck Gesellschaft via the Laplace project for both equipment and personnel (P.K.). BG acknowledges financial support from the ERC-CoG-SHINE-771602. The authors also acknowledge use of the ZGH infrastructure (FIB Thermo Fisher Scientific, Helios G4 CX).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lola Lilensten or Paraskevas Kontis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 262 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lilensten, L., Kostka, A., Lartigue-Korinek, S. et al. Partitioning of Solutes at Crystal Defects in Borides After Creep and Annealing in a Polycrystalline Superalloy. JOM 73, 2293–2302 (2021). https://doi.org/10.1007/s11837-021-04736-5

Download citation