Skip to main content

Advertisement

Log in

A Review on Hydrogels and Ferrogels for Biomedical Applications

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydrogels and ferrogels are greatly emerged biomimetic cross-linked polymeric networks with three-dimensional structures having applications in the fields of joint replacements, catalysts, wound healing, biosensing, contact lenses, and drug delivery. Here, preparations, types, and applications of hydrogels/ferrogels have been assembled. The different types of classes of hydrogels based on the interaction mechanism between the metallic nanoparticles and polymeric network are covered in the review. Recent progress of mechanical, tribological, and magnetic aspects of hydrogels/ferrogels are critically investigated. The clinical perspectives of hydrogels/ferrogels are confirmed by cell migration and proliferation studies. Additionally, this report demonstrates that the addition of different nanoparticles (carbon nanotubes or silicon) within hydrogels/ferrogels can alter the properties of the ferrogels due to the synergistic effect and strong mechanical bonding. Therefore, polymeric candidate hydrogels/ferrogels are precisely illuminated in this review, and can be a potential highlight for future research related to biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Zrínyi, L. Barsi, and A. Büki, Polym. Gels Netw. 5, 415 (1997).

    Article  Google Scholar 

  2. F.A. Blyakhman, A.P. Safronov, A.Y. Zubarev, T.F. Shklyar, O.G. Makeyev, E.B. Makarova, V.V. Melekhin, A. Larrañaga, and G.V. Kurlyandskaya, Results Phys. 7, 3624 (2017).

    Article  Google Scholar 

  3. F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, and K. Monobe, Colloid Polym. Sci. 264, 595 (1986).

    Article  Google Scholar 

  4. M. Arjmandi, M. Ramezani, A. Nand, and T. Neitzert, Wear 406, 194 (2018).

    Article  Google Scholar 

  5. R. Censi, A. Dubbini, and P. Matricardi, Curr. Pharm. Des. 21, 1545 (2015).

    Article  Google Scholar 

  6. H. Akkiraju, and A. Nohe, J. Dev. Biol. 3, 177 (2015).

    Article  Google Scholar 

  7. A. Årøen, D.G. Jones, and F.H. Fu, Sports Med. Arthrosc. 6, 31 (1998).

    Google Scholar 

  8. W. Widuchowski, J. Widuchowski, and T. Trzaska, Knee 14, 177 (2007).

    Article  Google Scholar 

  9. T.K. Pylawka, R.W. Kang, and B.J. Cole, Injury 30, 418 (2006).

    Google Scholar 

  10. M. Kobayashi, and M. Oka, J. Biomater. Sci. Polym. 15, 741 (2004).

    Article  Google Scholar 

  11. T.S. Stashak, E. Farstvedt, and A. Othic, Clin. Tech. Equine Pract. 3, 148 (2004).

    Article  Google Scholar 

  12. F. Islands, and D. Survey, Nature 185, 63 (1960).

    Article  Google Scholar 

  13. D. Friends, L. Incorporated, and A.E.D. Mulcahy, United States Patent 19, 3 (1991).

  14. H.J. Hwang, M.Y. Ryu, C.Y. Park, J. Ahn, H.G. Park, C. Choi, S. Do Ha, T.J. Park, and J.P. Park, Biosens. Bioelectron. 87, 164 (2017).

    Article  Google Scholar 

  15. H.R. Culver, J.R. Clegg, and N.A. Peppas, Acc. Chem. Res. 50, 170 (2017).

    Article  Google Scholar 

  16. S.S. Vaddiraju, H. Singh, D.J. Burgess, F.C. Jain, and F. Papadimitrakopoulos, J. Diabetes Sci. Technol. 3, 863 (2009).

    Article  Google Scholar 

  17. G. Ren, X. Xu, Q. Liu, J. Cheng, X. Yuan, L. Wu, and Y. Wan, React. Funct. Polym. 66, 1559 (2006).

    Article  Google Scholar 

  18. S. Tan, X. Tan, J. Xu, D. Zhao, J. Zhang, and L. Liu, Anal. Methods 3, 110 (2011).

    Article  Google Scholar 

  19. C. Fan, Q. Gao, D. Zhu, G. Wagner, and G. Li, Analyst 126, 1086 (2001).

    Article  Google Scholar 

  20. S.K. Jha, A. Topkar, and S.F. D’Souza, J. Biochem. Biophys. Methods 70, 1145 (2008).

    Article  Google Scholar 

  21. K. Omidfar, A. Dehdast, H. Zarei, B.K. Sourkohi, and B. Larijani, Biosens. Bioelectron. 26, 4177 (2011).

    Article  Google Scholar 

  22. Y.C. Tsai, J.D. Huang, and C.C. Chiu, Biosens. Bioelectron. 22, 3051 (2007).

    Article  Google Scholar 

  23. T. Bertok, P. Gemeiner, M. Mikula, P. Gemeiner, and J. Tkac, Microchim. Acta 180, 151 (2013).

    Article  Google Scholar 

  24. C.S. Pundir, B. Sandeep Singh, and J. Narang, Clin. Biochem. 43, 467 (2010).

    Article  Google Scholar 

  25. S. Elhag, K. Khun, V. Khranovskyy, X. Liu, M. Willander, and O. Nur, Sensors (Switzerland) 16, 222 (2016).

    Article  Google Scholar 

  26. H. Vaisocherová, E. Brynda, and J. Homola, Anal. Bioanal. Chem. 407, 3927 (2015).

    Article  Google Scholar 

  27. M. Veerapandian, Y.T. Seo, K. Yun, and M.H. Lee, Biosens. Bioelectron. 58, 200 (2014).

    Article  Google Scholar 

  28. A.J. Zaitouna, J. Joyce, R.L. Cerny, P.H. Dussault, and R.Y. Lai, Anal. Chem. 87, 6966 (2015).

    Article  Google Scholar 

  29. L.-C. Su, Y.-C. Tian, Y.-F. Chang, C. Chou, and C.-S. Lai, J. Biomed. Opt. 19, 011013 (2013).

    Article  Google Scholar 

  30. N. Li, L. Qi, Y. Shen, J. Qiao, Y. Chen, and A.C.S. Appl, Mater. Interfaces 6, 17289 (2014).

    Article  Google Scholar 

  31. J. Tavakoli, and Y. Tang, Polymers (Basel) 9, 1 (2017).

    Article  Google Scholar 

  32. G. Ertürk, and B. Mattiasson, Sensors (Switzerland) 17, 1 (2017).

    Google Scholar 

  33. T. Vo-Dinh, J. Cell. Biochem. 87, 154 (2002).

    Article  Google Scholar 

  34. J. Li, K.P. Lee, and A.I. Gopalan, Coatings 9, 744 (2019).

    Article  Google Scholar 

  35. M.A. Accardi, D. Dini, and P.M. Cann, Tribol. Int. 44, 565 (2011).

    Article  Google Scholar 

  36. T. Funami, M. Hiroe, S. Noda, I. Asai, S. Ikeda, and K. Nishinari, Food Hydrocoll. 21, 617 (2007).

    Article  Google Scholar 

  37. S. Awasthi, J.K. Gaur, and M.S. Bobji, J. Alloys Compd. 848, 156259 (2020).

    Article  Google Scholar 

  38. B.W. Mahde, N.D. Radia, L.S. Jasim, and H.O. Jamel, J. Pharm. Sci. Res. 10, 2850 (2018).

    Google Scholar 

  39. S.K. Patel, F. Rodriguez, and C. Cohen, Polymer (Guildf) 30, 2198 (1989).

    Article  Google Scholar 

  40. X. Wang, R. Wang, C. Peng, T. Li, and B. Liu, J. Mater. Sci. Technol. 27, 147 (2011).

    Article  Google Scholar 

  41. J.A. Galicia, F. Cousin, E. Dubois, O. Sandre, V. Cabuil, and R. Perzynski, J. Magn. Magn. Mater. 323, 1211 (2011).

    Article  Google Scholar 

  42. L.S. Spinelli, A.S. Aquino, E. Lucas, A.R. D’Almeida, R. Leal, A.L. Martins, and M. In, Polym. Eng. Sci. 48, 1885 (2008).

    Article  Google Scholar 

  43. M. Zhai, F. Yoshii, T. Kume, and K. Hashim, Carbohydr. Polym. 50, 295 (2002).

    Article  Google Scholar 

  44. A.M. Meftah, E. Gharibshahi, N. Soltani, W.M. Mat Yunus, and E. Saion, Polymers (Basel) 6, 2435 (2014).

    Article  Google Scholar 

  45. L. Zhao, Q. Li, Y. Su, Q. Yue, and B. Gao, Int. J. Hydrog. Energy 42, 6746 (2017).

    Article  Google Scholar 

  46. M. Helminger, B. Wu, T. Kollmann, D. Benke, D. Schwahn, V. Pipich, D. Faivre, D. Zahn, and H. Cölfen, Adv. Funct. Mater. 24, 3187 (2014).

    Article  Google Scholar 

  47. J.S. Gonzalez, C.E. Hoppe, D. Muraca, F.H. Sánchez, and V.A. Alvarez, Colloid Polym. Sci. 289, 1839 (2011).

    Article  Google Scholar 

  48. R. Hernández, A. Sarafian, D. López, and C. Mijangos, Polymer (Guildf) 45, 5543 (2004).

    Article  Google Scholar 

  49. H.M.N. El-din, and A.W.M. El-naggar, Des. Monomers Polym. 17, 322 (2014).

    Article  Google Scholar 

  50. J. Lim, A. Chouai, S.-T. Lo, W. Liu, X. Sun, and E.E. Simanek, Bioconjug. Chem. 20, 2154 (2009).

    Article  Google Scholar 

  51. C. Gong, S. Shi, and P. Dong, Int. J. Pharm. 365, 89 (2009).

    Article  Google Scholar 

  52. A. Richter, Hydrogels for Actuators (Springer, Heidelberg, 2009).

    Book  Google Scholar 

  53. W.A. Laftah, S. Hashim, and A.N. Ibrahim, Polym. Plast. Technol. Eng. 50, 1475 (2011).

    Article  Google Scholar 

  54. X.-Z. Zhang, D.-Q. Wu, and C.-C. Chu, Biomaterials 25, 3793 (2004).

    Article  Google Scholar 

  55. N. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm. 50, 27 (2000).

    Article  Google Scholar 

  56. E.S. Gil, and S.M. Hudson, Prog. Polym. Sci. 29, 1173 (2004).

    Article  Google Scholar 

  57. N. Kashyap, N. Kumar, and M.R. Kumar, Crit. Rev. Ther. Drug Carr. Syst. 22, 107 (2005).

    Article  Google Scholar 

  58. J.T. Suri, D.B. Cordes, F.E. Cappuccio, R.A. Wessling, and B. Singaram, Angew. Chem. Int. Ed. 42, 5857 (2003).

    Article  Google Scholar 

  59. V.L. Alexeev, A.C. Sharma, and A.V. Goponenko, Anal. Chem. 75, 2316 (2003).

    Article  Google Scholar 

  60. P.-C. Chen, L.-S. Wan, B.-B. Ke, and Z.-K. Xu, Langmuir 27, 12597 (2011).

    Article  Google Scholar 

  61. Y. Tian, B.R. Shumway, and D.R. Meldrum, Chem. Mater. 22, 2069 (2010).

    Article  Google Scholar 

  62. G. Kickelbick, Hybrid Materials: Synthesis, Characterization, and Applications (Wiley, New York, 2007).

    Google Scholar 

  63. J. Landers, L. Roeder, S. Salamon, M. Schmidt, and H. Wende, J. Phys. Chem. C 119, 20642 (2015).

    Article  Google Scholar 

  64. C. Mayer, V. Cabuil, T. Lalot, and R. Thouvenot, Adv. Mater. 12, 417 (2000).

    Article  Google Scholar 

  65. M. Zrinyi, Colloid Polym. Sci. 278, 98 (2000).

    Article  Google Scholar 

  66. R. Ramanujan, and L. Lao, Smart Mater. Struct. 15, 952 (2006).

    Article  Google Scholar 

  67. M. Bonini, S. Lenz, R. Giorgi, and P. Baglioni, Langmuir 23, 8681 (2007).

    Article  Google Scholar 

  68. R. Barbucci, D. Pasqui, G. Giani, M. De Cagna, M. Fini, R. Giardino, and A. Atrei, Soft Matter 7, 5558 (2011).

    Article  Google Scholar 

  69. J.A. Galicia, O. Sandre, F. Cousin, D. Guemghar, C. Ménager, and V. Cabuil, J. Phys. Condens. Matter 15, S1379 (2003).

    Article  Google Scholar 

  70. N. Frickel, R. Messing, and A.M. Schmidt, J. Mater. Chem. 21, 8466 (2011).

    Article  Google Scholar 

  71. S. Li, V.T. John, G.C. Irvin, G.L. Rachakonda, S.H. McPherson, and C.J.O. Connor, J. Appl. Phys. 85, 5965 (1999).

    Article  Google Scholar 

  72. M. Babincová, D. Leszczynska, P. Sourivong, P. Čičmanec, and P. Babinec, J. Magn. Magn. Mater. 225, 109 (2001).

    Article  Google Scholar 

  73. Q.J.I. Asempah, S. Laurent, A. Fornara, R.N. Muller, and M. Muhammed, Adv. Mater. 21, 1354 (2009).

    Article  Google Scholar 

  74. R. Weeber, M. Hermes, and A.M. Schmidt, J. Phys. Condens. Matter 30, 063002 (2018).

    Article  Google Scholar 

  75. M. Arjmandi, and M. Ramezani, J. Mech. Behav. Biomed. Mater. 95, 196 (2019).

    Article  Google Scholar 

  76. F.A. Blyakhman, A.P. Safronov, O.G. Makeyev, V.V. Melekhin, T.F. Shklyar, A.Y. Zubarev, E.B. Makarova, D.A. Sichkar, M.A. Rusinova, S.Y. Sokolov, and G.V. Kurlyandskaya, J. Mech. Med. Biol. 18, 1 (2018).

    Article  Google Scholar 

  77. N.A. Buznikov, A.P. Safronov, I. Orue, E.V. Golubeva, V.N. Lepalovskij, A.V. Svalov, A.A. Chlenova, and G.V. Kurlyandskaya, Biosens. Bioelectron. 117, 366 (2018).

    Article  Google Scholar 

  78. C. Kim, H. Kim, H. Park, and K.Y. Lee, Carbohydr. Polym. 223, 115045 (2019).

    Article  Google Scholar 

  79. F.A. Blyakhman, N.A. Buznikov, T.F. Sklyar, A.P. Safronov, E.V. Golubeva, A.V. Svalov, S.Y. Sokolov, G.Y. Melnikov, I. Orue, and G.V. Kurlyandskaya, Sensors (Switzerland) 18, 872 (2018).

    Article  Google Scholar 

  80. A.P. Safronov, B.J.H. Stadler, J. Um, M.R.Z. Kouhpanji, J.A. Masa, A.G. Galyas, and G.V. Kurlyandskaya, Materials (Basel) 12, 1 (2019).

    Article  Google Scholar 

  81. M. Safi, M. Yan, M.A. Guedeau-Boudeville, H. Conjeaud, V. Garnier-Thibaud, N. Boggetto, A. Baeza-Squiban, F. Niedergang, D. Averbeck, and J.F. Berret, ACS Nano 5, 5354 (2011).

    Article  Google Scholar 

  82. R.M. Fratila, S. Rivera-Fernández, and J.M. De La Fuente, Nanoscale 7, 8233 (2015).

    Article  Google Scholar 

  83. E.A. Mikhnevich, P.D. Chebotkova, A.P. Safronov, and G.V. Kurlyandskaya, J. Phys. Conf. Ser. 1389, 012059 (2019).

    Article  Google Scholar 

  84. F.A. Blyakhman, E.B. Makarova, P.A. Shabadrov, F.A. Fadeyev, T.F. Shklyar, A.P. Safronov, S.V. Komogortsev, and G.V. Kurlyandskaya, Phys. Met. Metallogr. 121, 299 (2020).

    Article  Google Scholar 

  85. B. Liu, J. Li, X. Lei, S. Miao, S. Zhang, P. Cheng, Y. Song, H. Wu, Y. Gao, L. Bi, and G. Pei, RSC Adv. 10, 25652 (2020).

    Article  Google Scholar 

  86. H. Ravanbakhsh, G. Bao, and L. Mongeau, Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  87. S. Awasthi, J.K. Gaur, S.K. Pandey, M.S. Bobji, and C. Srivastava, ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c05394.

Download references

Acknowledgments

SA thanks the University Grant Commission (UGC), New Delhi, India, for providing a Dr. D. S. Kothari Postdoctoral Fellowship (CH/19-20/0029).

Funding

The work was written during the Dr. D. S. Kothari Postdoctoral Fellowship (CH/19-20/0029) provided by University Grant Commission (UGC), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Awasthi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, S. A Review on Hydrogels and Ferrogels for Biomedical Applications. JOM 73, 2440–2451 (2021). https://doi.org/10.1007/s11837-021-04734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04734-7

Navigation