Skip to main content
Log in

Molecular Dynamics Study of Mechanism of Solid–Liquid Interface Migration and Defect Formation in Al3Sm Alloy

  • Defect and Phase Transformation Pathway Engineering for Desired Microstructures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We developed a Finnis–Sinclair potential suitable for molecular dynamics (MD) simulation of solidification of Al3Sm alloy. The MD simulation showed a layer-by-layer solid–liquid interface (SLI) motion mechanism in the [001] direction. The SLI migration seems to be satisfactorily described by Wilson–Frenkel theory in the temperature interval from 0.7Tm to Tm. It was found that the SLI passes an atomic plane as soon as the Sm sublattice is formed while the Al sublattice keeps forming for a while after that, and high Al diffusivity is observed in the solid phase. Those unsettled Al atoms trapped in solid phase will leave vacancies and form defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng. R Rep. 41, 121. (2003).

    Article  Google Scholar 

  2. J.J. Hoyt, M. Asta, and A. Karma, Interface Sci. 10, 181. (2002).

    Article  Google Scholar 

  3. M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta, Model. Simul. Mater. Sci. Eng. 18, 074002. (2010).

    Article  Google Scholar 

  4. J. Monk, Y. Yang, M.I. Mendelev, M. Asta, J.J. Hoyt, and D.Y. Sun, Model. Simul. Mater. Sci. Eng. 18, 015004. (2009).

    Article  Google Scholar 

  5. J.J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86, 5530. (2001).

    Article  Google Scholar 

  6. R.L. Davidchack, and B.B. Laird, Phys. Rev. Lett. 85, 4751. (2000).

    Article  Google Scholar 

  7. E. Sanz, C. Vega, J.R. Espinosa, R. Caballero-Bernal, J.L.F. Abascal, and C. Valeriani, J. Am. Chem. Soc. 135, 15008. (2013).

    Article  Google Scholar 

  8. Y. Sun, H. Song, F. Zhang, L. Yang, Z. Ye, M.I. Mendelev, C.-Z. Wang, and K.-M. Ho, Phys. Rev. Lett. 120, 085703. (2018).

    Article  Google Scholar 

  9. C.A. Becker, D.L. Olmsted, M. Asta, J.J. Hoyt, and S.M. Foiles, Phys. Rev. B. 79, 054109. (2009).

    Article  Google Scholar 

  10. M.J. Kramer, M.I. Mendelev, and R.E. Napolitano, Phys. Rev. Lett. 105, 245501. (2010).

    Article  Google Scholar 

  11. X.Q. Zheng, Y. Yang, Y.F. Gao, J.J. Hoyt, M. Asta, and D.Y. Sun, Phys. Rev. E. 85, 041601. (2012).

    Article  Google Scholar 

  12. H. Song, Y. Sun, F. Zhang, C.Z. Wang, K.M. Ho, and M.I. Mendelev, Phys. Rev. Mater. 2, 023401. (2018).

    Article  Google Scholar 

  13. Z. Ye, F. Zhang, Y. Sun, M.I. Mendelev, R.T. Ott, E. Park, M.F. Besser, M.J. Kramer, Z. Ding, C.-Z. Wang, and K.-M. Ho, Appl. Phys. Lett. 106, 101903. (2015).

    Article  Google Scholar 

  14. Z. Ye, F. Zhang, Y. Sun, M.C. Nguyen, S.H. Zhou, L. Zhou, F. Meng, R.T. Ott, E. Park, M.F. Besser, M.J. Kramer, Z.J. Ding, M.I. Mendelev, C.Z. Wang, R.E. Napolitano, and K.M. Ho, Phys. Rev. Mater. 1, 055601. (2017).

    Article  Google Scholar 

  15. Z. Ye, F. Meng, F. Zhang, Y. Sun, L. Yang, S.H. Zhou, R.E. Napolitano, M.I. Mendelev, R.T. Ott, M.J. Kramer, C.Z. Wang, and K.M. Ho, Sci. Rep. 9, 6692. (2019).

    Article  Google Scholar 

  16. L. Zhao, G.B. Bokas, J.H. Perepezko, and I. Szlufarska, Acta Mater. 142, 1. (2018).

    Article  Google Scholar 

  17. Y. Sun, F. Zhang, L. Yang, H. Song, M.I. Mendelev, C.-Z. Wang, and K.-M. Ho, Phys. Rev. Mater. 3, 023404. (2019).

    Article  Google Scholar 

  18. M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, and K.M. Ho, Model. Simul. Mater. Sci. Eng. 23, 045013. (2015).

    Article  Google Scholar 

  19. M.W. Finnis, and J.E. Sinclair, Philos. Mag. A. 50, 45. (1984).

    Article  Google Scholar 

  20. F. Ercolessi, and J.B. Adams, Europhys. Lett. 26, 583. (1994).

    Article  Google Scholar 

  21. B.-J. Lee, J.-H. Shim, and M.I. Baskes, Phys. Rev. B. 68, 144112. (2003).

    Article  Google Scholar 

  22. Y. Mishin, Acta Mater. 52, 1451. (2004).

    Article  Google Scholar 

  23. M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta, Philos. Mag. 88, 1723. (2008).

    Article  Google Scholar 

  24. M.J. Kramer, M.I. Mendelev, and M. Asta, Philos. Mag. 94, 1876. (2014).

    Article  Google Scholar 

  25. M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G. Hart, and S. Curtarolo, Comput. Mater. Sci. 136, S1. (2017).

    Article  Google Scholar 

  26. S.H. Zhou, and R.E. Napolitano, Phys. Rev. B. 78, 184111. (2008).

    Article  Google Scholar 

  27. X.W. Fang, C.Z. Wang, Y.X. Yao, Z.J. Ding, and K.M. Ho, J. Phys. Condens. Matter. 23, 235104. (2011).

    Article  Google Scholar 

  28. M.I. Mendelev, Y. Sun, F. Zhang, C.Z. Wang, and K.M. Ho, J. Chem. Phys. 151, 214502. (2019).

    Article  Google Scholar 

  29. S. Plimpton, J. Comput. Phys. 117, 1. (1995).

    Article  Google Scholar 

  30. M.I. Mendelev, “2021--Mendelev-M-Al-Sm”, (NIST Interatomic Potentials Repository, 2021), https://www.ctcms.nist.gov/potentials/entry/2021-Mendelev-M-Al-Sm/.

  31. P.J. Steinhardt, D.R. Nelson, and M. Ronchetti, Phys. Rev. B. 28, 784. (1983).

    Article  Google Scholar 

  32. P.R. ten Wolde, M.J. Ruiz-Montero, and D. Frenkel, Phys. Rev. Lett. 75, 2714. (1995).

    Article  Google Scholar 

  33. P.R. ten Wolde, M.J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932. (1996).

    Article  Google Scholar 

  34. S. Auer, and D. Frenkel, J. Chem. Phys. 120, 3015. (2004).

    Article  Google Scholar 

  35. J.Q. Broughton, G.H. Gilmer, and K.A. Jackson, Phys. Rev. Lett. 49, 1496. (1982).

    Article  Google Scholar 

  36. Y. Ashkenazy, and R.S. Averback, Acta Mater. 58, 524. (2010).

    Article  Google Scholar 

  37. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Acta Mater. 57, 941. (2009).

    Article  Google Scholar 

  38. H.A. Wilson, Philos. Mag. 50, 238. (1900).

    Article  Google Scholar 

  39. J. Frenkel, and A. Joffe, Phys. Rev. 39, 530. (1932).

    Article  Google Scholar 

  40. M.I. Mendelev, Model. Simul. Mater. Sci. Eng. 20, 045014. (2012).

    Article  Google Scholar 

  41. J.R. Espinosa, C. Vega, and C. Valeriani, J. Chem. Phys. 144, 034501. (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors utilized the results of ab initio calculations obtained by Prof. K.M. Ho’s group (Iowa State University). This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science, and Engineering Division. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358. H.S. acknowledged the High-Performance Computing resources provided by the Los Alamos National Laboratory (LANL) Institutional Computing Program; LANL is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy (Contract No. 89233218NCA000001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Song or M. I. Mendelev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Mendelev, M.I. Molecular Dynamics Study of Mechanism of Solid–Liquid Interface Migration and Defect Formation in Al3Sm Alloy. JOM 73, 2312–2319 (2021). https://doi.org/10.1007/s11837-021-04733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04733-8

Navigation