Skip to main content
Log in

CaO-Assisted Carbothermal Reduction of MoS2 to Synthesize Molybdenum Powder

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Molybdenite (MoS2) is the most commonly used mineral for molybdenum extraction. In this work, molybdenum (Mo) powder was directly synthesized via CaO-assisted carbothermic reduction of MoS2. The experimental results showed that MoS2 first reacted with CaO to form CaMoO4, Mo and CaS, and then carbon black reduced the CaMoO4 to yield Mo. Almost all the sulfur as MoS2 was fixed in CaS, and the main gaseous product was CO. In addition, it was observed that MoS2 can be almost fully converted to Mo at a MoS2:CaO:C molar ratio of 1:4:1.7 after reacting at 1200°C for 60 min. After removing by-product CaS, the prepared Mo powder has a carbon content of 0.18% and a sulfur content of 0.46%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.A. Lasheen, M.E. El-Ahmady, H.B. Hassib, and A.S. Helal, Min. Proc. Ext. Met. Rev. 36, 145. (2015).

    Article  Google Scholar 

  2. L. Wang, G.H. Zhang, J. Dang, and K.C. Chou, Trans. Nonferr. Metal. Soc. 25, 4167. (2015).

    Article  Google Scholar 

  3. D.H. Wang, G.D. Sun, and G.H. Zhang, Int. J. Refract. Met. Hard Mater. 75, 70. (2018).

    Article  Google Scholar 

  4. A.G. Kholmogorov, O.N. Kononova, G.L. Pashkov, S.V. Kachin, O.N. Panchenko, and O.P. Kalyakina, Euro. J. Miner. Environ. Proc. 2, 82. (2002).

    Google Scholar 

  5. E. Blanco, H.Y. Sohn, G. Han, and K.Y. Hakobyan, Metall. Mater. Trans. B 38, 689. (2007).

    Article  Google Scholar 

  6. Q.S. Zhou, W.T. Yun, J.T. Xi, X.B. Li, T.G. Qi, G.H. Liu, and Z.H. Peng, Trans. Nonferr. Metal Soc. 27, 1618. (2017).

    Article  Google Scholar 

  7. P.V. Aleksandrov, A.S. Medvedev, M.F. Milovanov, V.A. Imideev, S.A. Kotova, and D.O. Moskovskikh, Int. J. Miner. Process. 161, 13. (2017).

    Article  Google Scholar 

  8. Z.F. Cao, H. Zhong, Z.H. Qiu, G.Y. Liu, and W.X. Zhang, Hydrometallurgy 99, 2. https://doi.org/10.1016/j.hydromet.2009.05.001 (2009).

    Article  Google Scholar 

  9. L. Wang, P. Guo, J. Pang, L. Luo, and P. Zhao, Vacuum 116, 77. (2015).

    Article  Google Scholar 

  10. G.H. Zhang, H.Q. Chang, L. Wang, and K.C. Chou, Int. J. Min. Metal. Mater. 25, 405. (2018).

    Article  Google Scholar 

  11. L. Wang, P.M. Guo, P. Zhao, L.B. Kong, and Z.L. Tian, Vacuum 152, 330. (2018).

    Article  Google Scholar 

  12. M. Kumar, T.R. Mankhand, D.S.R. Murthy, R. Mukhpadhyay, and P.M. Prasad, Hydrometallurgy 86, 56. (2007).

    Article  Google Scholar 

  13. F. Habashi, and R. Dugdale, Metall. Trans. 4, 1865. (1973).

    Article  Google Scholar 

  14. P.M. Prasad, T.R. Mankhand, and P. Suryaprakash Rao, Miner. Eng. 6, 857. (1993).

    Article  Google Scholar 

  15. M.M. Afsahi, M. Sohrabi, R.V. Kumar, and H.A. Ebrahim, Thermochim. Acta 473, 61. (2008).

    Article  Google Scholar 

  16. M.M. Afsahi, R.V. Kumar, M. Sohrabi, and Y.J. Park, Chem. Eng. Process 75, 1. (2014).

    Article  Google Scholar 

  17. T.R. Mankhand, and P.M. Prasad, Metall. Trans. B 13, 275. (1982).

    Article  Google Scholar 

  18. P.S. Rao, and P.M. Prasad, Mater. Trans. JIM 34, 1229. (1993).

    Article  Google Scholar 

  19. P.M. Prasad, T.R. Mankhand, P.S.P. Rao, S.N. Singh, and A.J.K. Prasad, Metall. Mater. Trans. B 33, 345. (2002).

    Article  Google Scholar 

  20. R. Padilla, M.C. Ruiz, and H.Y. Sohn, Metall. Mater. Trans. B 28, 265. (1997).

    Article  Google Scholar 

  21. P.K. Tripathy, and R.H. Rakhasia, Min. Proc. Ext. Metall. Rev. 115, 8. (2006).

    Article  Google Scholar 

  22. S. Ghasemi, M.H. Abbasi, A. Saidi, J.Y. Kim, and J.S. Lee, Ind. Eng. Chem. Res. 50(23), 13340. (2011).

    Article  Google Scholar 

  23. S.G. Najafabadi, M.H. Abbasi, and A. Saidi, Thermochim. Acta 503, 46. (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 599 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HQ., Zhang, GH. & Chou, KC. CaO-Assisted Carbothermal Reduction of MoS2 to Synthesize Molybdenum Powder. JOM 73, 2540–2548 (2021). https://doi.org/10.1007/s11837-021-04719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04719-6

Navigation