Skip to main content
Log in

Fundamental Theory on Pyrometallurgy Direct Smelting of Waste Printed Circuit Boards

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A fundamental theory on pyrometallurgic direct smelting of waste printed circuit boards was investigated in this work. First, the effects of the Fe/SiO2 (mass ratio) and CaO/SiO2 (mass ratio) on the liquidus temperature and viscosity of slag were systematically analyzed at a PO2 value of 10–12 atm. Then, a verification experiment was carried out. Thermodynamic calculation results showed that the liquidus temperature of slag first decreased then increased as Fe/SiO2 and CaO/SiO2 were increased. At 1250°C, the viscosity of slag is lower than 0.5 Pa s in the Fe/SiO2 range of (0.8–1.2):1 and CaO/SiO2 range of (0.25–0.85):1. The verification experiment indicated that an alloy with high content copper can be obtained. Microanalysis of the alloy and slag demonstrated that the distinguishable crystal phase in the alloy mainly contained metallic copper, metallic iron, and a small amount of intermetallic compounds such as (Fe, Ni) and Ni3Sn2. The slag was mainly composed of fayalite (Fe2SiO4), calcium silicate (Ca2SiO4, CaSiO3), and gehlenite (Ca2Al2SiO7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Sun, Y. Xiao, and J. Sietsma, Hydrometallurgy 152, 91. (2015).

    Article  Google Scholar 

  2. Z. Liu, Z. Zhang, Z. Li, X. Xie, S. Zhong, Y. Li, Z. Xu, and H. Liu, Chem. Eng. J. 418, 129442. (2021).

    Article  Google Scholar 

  3. A. Işıldar, M. Lenz, and A. Marra, J. Hazard. Mater. 362, 467. (2019).

    Article  Google Scholar 

  4. P. Ford and J. Fisher, J. Clean. Prod. 236, 117490. (2019).

    Article  Google Scholar 

  5. Z. Liu, Z. Li, X. Xie, S. Yang, J. Fei, Y. Li, and H. Liu, Environ. Sci. Technol. 54, 604. (2019).

    Google Scholar 

  6. J. Guo, J. Guo, and Z.G. Xu, J. Hazard. Mater. 168, 567. (2009).

    Article  Google Scholar 

  7. R. Wang, and Z. Xu, Waste Manag. 34, 1455. (2014).

    Article  Google Scholar 

  8. B. Nasdere, and G. Seliger, Environ. Sci. Technol. 37, 5354. (2003).

    Article  Google Scholar 

  9. K. Yan, L. Liu, H. Zhao, L. Tian, Z. Xu, and R. Wang, Front. Chem. https://doi.org/10.3389/fchem.2020.592837 (2021).

    Article  Google Scholar 

  10. G. Yan, J. Guo, and G. Zhu, Waste Manag. 106, 145. (2020).

    Article  Google Scholar 

  11. X.N. Zhu, L.Y. Zhang, and S.L. Dong, Waste Manag. 109, 222. (2020).

    Article  Google Scholar 

  12. A. Kumar, M.E. Holuszko, and T. Janke, Waste Manag. 75, 94. (2018).

    Article  Google Scholar 

  13. P. Zhu, Y. Chen, and L.Y. Wang, Waste Manag. Res. 30, 1222. (2012).

    Article  Google Scholar 

  14. B. Chen, J. He, and Y. Xi, J. Hazard. Mater. 364, 388. (2018).

    Article  Google Scholar 

  15. X. Gao, Q. Li, and J. Qiu, Waste Manag. 74, 427. (2018).

    Article  Google Scholar 

  16. F.R. Xiu, Y. Li, and Y. Qi, Waste Manag. 84, 355. (2019).

    Article  Google Scholar 

  17. H. Li, J. Eksteen, and E. Oraby, Resour. Conserv. Recycl. 139, 122. (2018).

    Article  Google Scholar 

  18. X. Guo, J. Liu, and Q. Tian, Chin. J. Nonferrous Metals 23, 1757. (2013).

    Google Scholar 

  19. L. Flandinet, F. Tedjar, V. Ghetta, and J. Fouletier, J. Hazard. Mater. 213, 485. (2012).

    Article  Google Scholar 

  20. C. Hageluken, Erzmetall 59, 152. (2006).

    Google Scholar 

  21. J. Liu, X. Guo, and Y. Liu, Chin. J. Nonferrous Metals 25, 545. (2015).

    Google Scholar 

  22. Z. Zhang, X. Dai, and W.H. Zhang, JOM 69, 2671. (2017).

    Article  Google Scholar 

  23. C.W. Bale, Calphad 33, 295. (2009).

    Article  Google Scholar 

  24. C.W. Bale, Calphad 54, 35. (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Key R&D Program of China (2019YFC1908404, 2019YFC1908405), National Natural Science Foundation of China (52004111, 51904124), Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology, and Key Projects of Jiangxi Key R&D Plan (20192ACB70017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Yan or Zhifeng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yan, K., Nie, H. et al. Fundamental Theory on Pyrometallurgy Direct Smelting of Waste Printed Circuit Boards. JOM 73, 2549–2557 (2021). https://doi.org/10.1007/s11837-021-04718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04718-7

Navigation