Skip to main content
Log in

Controlling Morphologies and Tuning the Properties of Co3O4 with Enhanced Lithium Storage Properties

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Designing particles with a unique structure to accommodate volume variations on cycling is an effective strategy to improve the electrochemical performance of metal oxide anode materials for lithium-ion batteries (LIBs). Here, dandelion-like Co3O4 was prepared by a hydrothermal method following heat treatment. In a similar preparation method, by adding a structural modifier, i.e., sodium citrate, the dandelion-like Co3O4 could be transformed into multi-shelled hollow Co3O4 microspheres. These two different Co3O4 morphologies show different electrochemical behaviors as anode materials for LIBs. The multi-shelled hollow Co3O4 exhibited the better electrochemical performance. At a current density of 200 mA g−1, the reversible capacity after 200 cycles reached 1132 mAh g−1. Even at a very high current density, i.e., 1000 mA g−1, the reversible capacity was as high as 936 mAh g−1 after 300 cycles. Such an excellent electrochemical performance is mainly attributed to the multi-shelled hollow structure that can alleviate the volume variation during lithiation/delithiation; this further helps enhance the structural and cycling stability. It also proves that the electrochemical performance of the material can be enhanced by morphological modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Xia, T. Liu, H. Guo, J. Liu, F. Cheng, and J. Liu, J. Energy Chem. 51, 303 (2020).

    Article  Google Scholar 

  2. Y.S. Duh, K.H. Lin, and C.S. Kao, J. Therm. Anal. Calorim. 132, 1677 (2018).

    Article  Google Scholar 

  3. Y. Liu, H. Zhang, N. Jiang, W. Zhang, and H. Sun, J. Alloys Compd. 834, 155030 (2020).

    Article  Google Scholar 

  4. J. Dai, M. Song, M. Wang, P. Li, C. Zhang, Y. Shen, and A. Xie, Ceram. Int. 42, 2410 (2016).

    Article  Google Scholar 

  5. L. Sui, X. Shi, T. Deng, H. Yang, H. Liu, H. Chen, W. Zhang, and W. Zheng, J. Energy Chem. 37, 7 (2019).

    Article  Google Scholar 

  6. D. Fang, L. Li, W. Xu, G. Li, G. Li, N. Wang, Z. Luo, J. Xu, L. Liu, C. Huang, C. Liang, and Y. Ji, J. Mater. Chem. A 1, 13203 (2013).

    Article  Google Scholar 

  7. D. Sun, Y. Tang, D. Ye, J. Yan, H. Zhou, and H. Wang, ACS Appl. Mater. Interfaces 9, 5254 (2017).

    Article  Google Scholar 

  8. S. Xia, J. Liu, F. Li, F. Cheng, X. Li, C. Sun, and H. Guo, Ceram. Int. 44, 9294 (2018).

    Article  Google Scholar 

  9. H. Guo, R. Mao, D. Tian, W. Wang, D. Zhao, X. Yang, and S. Wang, J. Mater. Chem. A 1, 3652 (2013).

    Article  Google Scholar 

  10. J. Guo, L. Chen, X. Zhang, and H. Chen, J. Solid State Chem. 213, 193 (2014).

    Article  Google Scholar 

  11. R. Xu, J. Wang, Q. Li, G. Sun, E. Wang, S. Li, J. Gu, and M. Ju, J. Solid State Chem. 182, 3177 (2009).

    Article  Google Scholar 

  12. M. Chen, X. Xia, J. Yin, and Q. Chen, Electrochim. Acta 160, 15 (2015).

    Article  Google Scholar 

  13. W. Li, L. Xu, and J. Chen, Adv. Funct. Mater. 15, 851 (2005).

    Article  Google Scholar 

  14. L. Fan, W. Zhang, S. Zhu, and Y. Lu, Ind. Eng. Chem. Res. 56, 2046 (2017).

    Article  Google Scholar 

  15. Y. Tan, Q. Gao, Z. Li, W. Tian, W. Qian, C. Yang, and H. Zhang, Sci. Rep. 6, 26460 (2016).

    Article  Google Scholar 

  16. X. Wang, H. Guan, S. Chen, H. Li, T. Zhai, D. Tang, Y. Bando, and D. Golberg, Chem. Commun. 47, 12280 (2011).

    Article  Google Scholar 

  17. B. Wang, X. Lu, and Y. Tang, J. Mater. Chem. A 3, 9689 (2015).

    Article  Google Scholar 

  18. N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, and Q. Chen, J. Phys. Chem. C 116, 7227 (2012).

    Article  Google Scholar 

  19. D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, and H.D. Abruña, ACS Nano 9, 1775 (2015).

    Article  Google Scholar 

  20. J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, and D. Wang, Angew. Chem. Int. Ed. 52, 6545 (2013).

    Article  Google Scholar 

  21. H. Li, H. Ma, M. Yang, B. Wang, H. Shao, L. Wang, R. Yu, and D. Wang, Mater. Res. Bull. 87, 224 (2017).

    Article  Google Scholar 

  22. L. Wu, Z. Wang, Y. Long, J. Li, Y. Liu, Q. Wang, X. Wang, S. Song, X. Liu, and H. Zhang, Small 13, 1604270 (2017).

    Article  Google Scholar 

  23. S. Xu, C.M. Hesse, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, and D. Wang, Energy Environ. Sci. 7, 632 (2014).

    Article  Google Scholar 

  24. H.T. Yang, Y.K. Su, C.M. Shen, T.Z. Yang, and H.J. Gao, Surf. Interface Anal. 36, 155 (2004).

    Article  Google Scholar 

  25. S. Zafeiratos, T. Dintzer, D. Teschner, R. Blume, M. Havecker, A. Knopgericke, and R. Schlogl, J. Catal. 269, 309 (2010).

    Article  Google Scholar 

  26. J. Jiang, R. Yu, R. Yi, W. Qin, G. Qiu, and X. Liu, J. Alloys Compd. 493, 529 (2010).

    Article  Google Scholar 

  27. L. Fang, B. Zhang, W. Li, X. Li, T. Xin, and Q. Zhang, RSC Adv. 4, 7167 (2014).

    Article  Google Scholar 

  28. W. Guo, T. Liu, H. Zhang, R. Sun, Y. Chen, W. Zeng, and Z. Wang, Sens. Actuators B 166, 492 (2012).

    Article  Google Scholar 

  29. L. Zhou, D. Zhao, and X. Lou, Adv. Mater. 24, 745 (2012).

    Article  Google Scholar 

  30. C. Hou, Y. Hou, Y. Fan, Y. Zhai, Y. Wang, Z. Sun, R. Fan, F. Dang, and J. Wang, J. Mater. Chem. A 6, 6967 (2018).

    Article  Google Scholar 

  31. H. Guo, L. Liu, T. Li, W. Chen, J. Liu, Y. Guo, and Y. Guo, Nanoscale 6, 5491 (2014).

    Article  Google Scholar 

  32. J. Chen, X. Xia, J. Tu, Q. Xiong, Y. Yu, X. Wang, and C.D. Gu, J. Mater. Chem. 22, 15056 (2012).

    Article  Google Scholar 

  33. G. Kim, I. Nam, N.D. Kim, J. Park, S. Park, and J. Yi, Electrochem. Commun. 22, 93 (2012).

    Article  Google Scholar 

  34. M. Xiao, Y. Meng, C. Duan, F. Zhu, and Y. Zhang, J. Mater. Sci. Mater. Electr. 30, 6148 (2019).

    Article  Google Scholar 

  35. G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, ACS Nano 9, 1592 (2015).

    Article  Google Scholar 

  36. D. Yin, G. Huang, Q. Sun, Q. Li, X. Wang, D. Yuan, C. Wang, and L. Wang, Electrochim. Acta 215, 410 (2016).

    Article  Google Scholar 

  37. J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, and K. Zhang, Nano Energy 12, 437 (2015).

    Article  Google Scholar 

  38. J. Liu, Y. Lu, R. Wang, Z. Xu, and X. Li, JOM 72, 3296 (2020).

    Article  Google Scholar 

  39. Y. Lu, J. Li, Z. Xu, J. Liu, S. Liu, and R. Wang, J. Mater. Sci. 56, 2451 (2021).

    Article  Google Scholar 

  40. D. Zuo, S. Song, C. An, L. Tang, Z. He, and J. Zheng, Nano Energy 62, 401 (2019).

    Article  Google Scholar 

Download references

Acknowledgement

The project was supported by Science and Technology Program of Jiangxi Province in China (20192BAB216015), Innovative Research and Development Institute of Guangdong (2018B090902009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaming Liu, Shubiao Xia or Ruixiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, J., Zhong, C. et al. Controlling Morphologies and Tuning the Properties of Co3O4 with Enhanced Lithium Storage Properties. JOM 73, 2495–2503 (2021). https://doi.org/10.1007/s11837-021-04717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04717-8

Navigation