Skip to main content
Log in

Mullite Synthesis Kinetics from Polydispersed Vibration-Milled Wastes of Commercial Corundum in the Presence of High-Silica Melt: Experimental and Modelling Results

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The experimental kinetic data of mullite synthesis using commercial regular corundum vibration-milled wastes and silica by isothermal heat treatment were studied. The principle of diffusion flux symmetry to a convex surface was applied to perform theoretical analysis of partially and fully immersed quasispherical polydispersed particle interaction with a liquid phase (PAFIQPP method) to further derive the kinetic equations of mullite synthesis in the range of conversion degrees 0 < α < 0.75–0.85 assuming corundum dissolution as a limiting stage in the molten silicate. The rate constants and activation energy of the process were calculated and adequately approximated by the PAFIQPP method experimental data: the rate constant growth from 3.3 × 10–8 cm s−1 to 9.2 × 10−8 cm s−1 was observed in the temperature range 1350–1500 °C; the activation energy was 160 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. W. Jander, and J.Z. Anorg, Allg. Chem. 163(1), 1–30. (1927).

    Article  Google Scholar 

  2. H. Schneider, and S. Komarneni, Mullite (Wiley, Weinheim, 2006), p 487.

    Google Scholar 

  3. D. Pruttskov, V. Busko, V. Sokol‘skii, E. Vovchenko, and T. Shapovalova, Refract. Technol Ceram. 7(8), 38–45. (Russian) (2016).

    Google Scholar 

  4. V. Sokol’skii, D. Pruttskov, V. Busko, V. Kazimirov, and O. Roik, Refract. Technol. Ceram. 7(8), 11–17. (Russian) (2017).

    Google Scholar 

  5. D. Pruttskov, V. Sokol’skii, E. Alekseev, V. Kazimirov, and O. Roik, E Vovchenko Refract. Technol. Ceram. 7(8), 3–16. (Russian) (2018).

    Google Scholar 

  6. K. Sugita. Shin Nittetsu Giho, 2008, 388-398.

  7. O. Isayev, V. Kislitsa, C. Zhang, K. Wu, and A. Hress, Metallurgist 59(9–10), 980–986. (2016).

    Article  Google Scholar 

  8. J. Fruhstorfer, L. Schöttler, S. Dudczig, G. Schmidt, P. Gehre, and C.G. Aneziris, J. Eur. Ceram. Soc. 36(5), 1299–306. https://doi.org/10.1016/j.jeurceramsoc.2015.11.038 (2016).

    Article  Google Scholar 

  9. H. Schneider, R.X. Fischer, and J. Schneider, J. Am. Ceram. Soc. 98(10), 2948–2967. https://doi.org/10.1111/jace.13817 (2015).

    Article  Google Scholar 

  10. M.F. Serra, M.S. Conconi, M.R. Gauna, G. Suárez, E.F. Aglietti, and N.M. Rendtorff, J. As. Ceram. S. 4(1), 61–67. https://doi.org/10.1016/j.jascer.2015.11.003 (2016).

    Article  Google Scholar 

  11. S. Lenz, J. Birkenstock, L.A. Fischer, W. Schüller, H. Schneider, and R.X. Fischer, Eur. J. Mineral. 31(2), 353–367. https://doi.org/10.1127/ejm/2019/0031-2812 (2019).

    Article  Google Scholar 

  12. M.M. Murshed, M. Šehović, M. Fischer, A. Senyshyn, H. Schneider, and T.M. Gesing, J. Am. Ceram. Soc. 100(11), 5259–5273. https://doi.org/10.1111/jace.15832? (2017).

    Article  Google Scholar 

  13. R. Salomão, and L. Fernandes, J. Eur. Ceram. Soc. 37(8), 2849–2856. https://doi.org/10.1016/j.jeurceramsoc.2017.03.017 (2017).

    Article  Google Scholar 

  14. H. Ye, Y. Li, and J. Sun, Ceram. Int. 45(10), 2934–2941. https://doi.org/10.1016/j.ceramint.2019.03.220 (2019).

    Article  Google Scholar 

  15. F. Griggio, E. Bernardo, P. Colombo, and G.L. Messing, J. Am. Ceram. Soc. 91(8), 2529–2533. https://doi.org/10.1111/j.1551-2916.2008.02515.x (2008).

    Article  Google Scholar 

  16. T.V. Vakalova, A.V. Ivanchenkov, and V.M. Pogrebenkov, Refract. Ind. Ceram. 46(1), 49–55. https://doi.org/10.1007/s11148-005-0048-8 (2005).

    Article  Google Scholar 

  17. Y.I. Goncharov, G.T. Ostapenko, L.I. Gorogotskaya, and L.P. Timoshkova, Glass Ceram. 58(12), 424–427. https://doi.org/10.1023/A:1014926829567 (2001).

    Article  Google Scholar 

  18. A.A. Chernov, E.I. Givargizov, H.S. Bagdasarov, L.N Demyanets, V.A. Kuznetsov, and A.N Lobachev. Modern crystallography. T.3. Crystal formation. Moscow (Russian) (1980).

  19. L.M. Whiting, High-temperature solutions-melts (Publishing House of Moscow State University, Moscow, 1991), p 231. (Russian).

    Google Scholar 

  20. H. Espig, Chemistry and technology 12(6), 387–391. (1960).

    Google Scholar 

  21. D. Elwell, Man-made Gemstones, 1st edn. (Ellis Horwood, Chichester, 1979), p 191.

    Google Scholar 

  22. A. Porada, and M. Gasik, Electrothermy of inorganic materials (Metallurgy, Moscow, 1990), p 232. (Russian).

    Google Scholar 

  23. B. Delmon, Introduction à la cinétique hétérogène (Technip, Paris, 1969). (French).

  24. E. Wigdorchik, and A. Sheinin, Mathematical simulation of continuous dissolution processes (Nauka, Leningrad, 1971), p 248. (Russian).

    Google Scholar 

  25. G. Axelrud, and A. Molchanov, Dissolution of Solids (Khimia, Moscow, 1977), p 272. (Russian).

    Google Scholar 

  26. A.M. Tsyv’yan, Glass Ceram. 59(1–2), 30–33. (Russian) (2002).

    Article  Google Scholar 

  27. S. Schmitt-Fogelevich, L. Vanicheva, E. Serychev, in: Proceedings of the All-Union Institute of Refractories, 42, 46–64. (Russian) (1971).

  28. K. Okada, J. Eur. Ceram. Soc. 28(2), 377–382. https://doi.org/10.1016/j.jeurceramsoc.2007.03.015 (2008).

    Article  Google Scholar 

  29. T. Takei, Y. Kameshima, A. Yasumori, and K. Okada, J. Eur. Ceram. Soc. 21(14), 2487–2493. https://doi.org/10.1016/S0955-2219(01)00266-7 (2001).

    Article  Google Scholar 

  30. Y. Luo, S. Ma, S. Zheng, C. Liu, D. Han, and X. Wang, J. Alloys Compds. 732, 828–837. https://doi.org/10.1016/j.jallcom.2017.09.179 (2018).

    Article  Google Scholar 

  31. D.A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics (Princeton University Press, Princeton, NJ, 2015), pp 63–82.

    Google Scholar 

  32. P. Polyakov, V. Mozhaev, V. Barnakin, and C. Romanchenko, Electrochemistry 17, 1454–1459. (Russian) (1981).

    Google Scholar 

  33. D. Pruttskov, N. Krivoruchko, and Yu. Olesov, Ukr. Khim. Zh. (Russ. Ed.) 60, 7-8, 526–531. (Russian) (1994).

  34. G.S. Ershov, and E.A. Popova. Izv. Acad. Sci., USSR, 5, 73–79. (Russian) (1963).

  35. P. Shurygin, and B. Boronenkov, Refractories 3(12), 561–565. (Russian) (1963).

    Google Scholar 

  36. A.R. Cooper, and W.D. Kingery, J. Am. Ceram. Soc. 47, 37–43. (1964).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Tekhnohim Company (Zaporizhia, Ukraine) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgii Sokolsky.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pruttskov, D., Sokol’skii, V., Bachurskyi, D. et al. Mullite Synthesis Kinetics from Polydispersed Vibration-Milled Wastes of Commercial Corundum in the Presence of High-Silica Melt: Experimental and Modelling Results. JOM 73, 2225–2234 (2021). https://doi.org/10.1007/s11837-021-04710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04710-1

Navigation