Skip to main content
Log in

Prediction of Elastic Behavior of Human Trabecular Bone Using A DXA Image-Based Deep Learning Model

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Inspired by the recent advancement in deep learning (DL) techniques, this study intended to confirm whether DL models could be trained to predict the elastic behavior of trabecular bone, a highly hierarchical biological material, using its dual-energy x-ray absorptiometry (DXA) images. The convolutional neural network, the most successful DL model in imaging-based predictions, was trained using simulated DXA images of trabecular bone samples as input and their apparent elastic modulus (Eapparent) determined using microCT-based finite element simulations as output (label). The results showed that the DL model achieved high fidelity in predicting Eapparent of trabecular bone samples (R2 > 0.86), and its performance appeared to be better than that of histomorphometric parameter-based regression models built using the same bone samples. The outcome of this study suggests that DXA image-based DL techniques can be used for multiscale modeling of trabecular bone to predict its elastic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.C. Wright, A.C. Looker, K.G. Saag, J.R. Curtis, E.S. Delzell, S. Randall, and B. Dawson-Hughes, J. Bone Miner. Res. 29, 2520. (2014).

    Article  Google Scholar 

  2. R. Bouillon, P. Burckhardt, C. Christiansen, H. Fleisch, T. Fujita, C. Gennari, T. Marin, G. Mazzuoli, L. Melton, and J. Ringe, Am. J. Med. 90, 107. (1991).

    Article  Google Scholar 

  3. E.S. Siris, Y.T. Chen, T.A. Abbott, E. Barrett-Connor, P.D. Miller, L.E. Wehren, and M.L. Berger, Arch. Intern. Med. 164, 1108. (2004).

    Article  Google Scholar 

  4. H.K. Genant, K. Engelke, T. Fuerst, C.C. Glüer, S. Grampp, S.T. Harris, M. Jergas, T. Lang, Y. Lu, and S. Majumdar, J. Bone Miner. Res. 11, 707. (1996).

    Article  Google Scholar 

  5. L. Pothuaud, P. Carceller, and D. Hans, Bone 42, 775. (2008).

    Article  Google Scholar 

  6. R. Winzenrieth, A. Heraud, B. Rabier, P. Carceller, L. Pothuaud, and D. Hans, Calcif. Tissue Int. 82, S181. (2008).

    Google Scholar 

  7. G.L. Niebur, M.J. Feldstein, J.C. Yuen, T.J. Chen, and T.M. Keaveny, J. Biomech. 33, 1575. (2000).

    Article  Google Scholar 

  8. B. Borah, G.J. Gross, T.E. Dufresne, T.S. Smith, M.D. Cockman, P.A. Chmielewski, M.W. Lundy, J.R. Hartke, and E.W. Sod, Anat. Rec. Off. Publ. Am. Assoc. Anat. 265, 101. (2001).

    Article  Google Scholar 

  9. M. Bessho, I. Ohnishi, H. Okazaki, W. Sato, H. Kominami, S. Matsunaga, and K. Nakamura, J. Orthop. Sci. 9, 545. (2004).

    Article  Google Scholar 

  10. T. Le Corroller, J. Halgrin, M. Pithioux, D. Guenoun, P. Chabrand, and P. Champsaur, Osteoporos. Int. 23, 163. (2012).

    Article  Google Scholar 

  11. X.L.N. Dong, M. Shirvaikar, and X.D. Wang, Bone 56, 327. (2013).

    Article  Google Scholar 

  12. X.N. Dong, R. Pinninti, A. Tvinnereim, T. Lowe, D. Di Paolo, and M. Shirvaikar, J. Biomech. 48, 2968. (2015).

    Article  Google Scholar 

  13. P. Xiao, T. Zhang, X.N. Dong, Y. Han, Y. Huang, and X. Wang, Bone Rep. 13, 100295. (2020).

    Article  Google Scholar 

  14. A.W. Popp, S. Meer, M.A. Krieg, R. Perrelet, D. Hans, and K. Lippuner, Eur. Spine J. 25, 3432. (2016).

    Article  Google Scholar 

  15. L. Pothuaud, N. Barthe, B. Merino, P. Carceller, and D. Hans, Bone 40, S248. (2007).

    Article  Google Scholar 

  16. A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, and S. Thrun, Nature 542, 115. (2017).

    Article  Google Scholar 

  17. Y. Ding, J.H. Sohn, M.G. Kawczynski, H. Trivedi, R. Harnish, N.W. Jenkins, D. Lituiev, T.P. Copeland, M.S. Aboian, and C.M. Aparici, Radiology 290, 456. (2019).

    Article  Google Scholar 

  18. X.Y. Chen, Y.W. Xu, S.C. Yan, D.W.K. Wong, T.Y. Wong, and J. Liu, Medical Image Computing and Computer-Assisted Intervention, Pt Iii. 9351, 669 (2015)

  19. T. Harrigan, and R. Mann, J. Mater. Sci. 19, 761. (1984).

    Article  Google Scholar 

  20. A. Odgaard, Bone 21, 191. (1997).

    Article  Google Scholar 

  21. M.S. Hefzy, and S.P. Singh, Med. Eng. Phys. 19, 50. (1997).

    Article  Google Scholar 

  22. H.J. Leng, X.N. Dong, and X.D. Wang, J. Biomech. 42, 491. (2009).

    Article  Google Scholar 

  23. S.A. Goldstein, J. Biomech. 20, 1055. (1987).

    Article  Google Scholar 

  24. X.N. Dong, Y. Lu, M. Krause, G. Huber, Y. Chevalier, H. Leng, and G. Maquer, J.. Biomech. 77, 223. (2018).

    Article  Google Scholar 

  25. B.C. Khoo, K. Brown, C. Cann, K. Zhu, S. Henzell, V. Low, S. Gustafsson, R.I. Price, and R.L. Prince, Osteoporos. Int. 20, 1539. (2009).

    Article  Google Scholar 

  26. A.J. Burghardt, G.J. Kazakia, T.M. Link, and S. Majumdar, Osteoporos. Int. 20, 2017. (2009).

    Article  Google Scholar 

  27. E. Dall’Ara, D. Pahr, P. Varga, F. Kainberger, and P. Zysset, Osteoporos. Int. 23, 563. (2012).

    Article  Google Scholar 

  28. S. Patil and B. Ravi, International Conference on Computer Aided Design and Computer Graphics 415 (2005)

  29. H. Kandi, D. Mishra, and S.R.K.S. Gorthi, Comput Secur. 65, 247. (2017).

    Article  Google Scholar 

  30. X.S. Liu, X.H. Zhang, K.K. Sekhon, M.F. Adams, D.J. McMahon, J.P. Bilezikian, E. Shane, and X.E. Guo, J. Bone Miner. Res. 25, 746. (2010).

    Google Scholar 

  31. G.Y. Yang, J. Kabel, B. Van Rietbergen, A. Odgaard, R. Huiskes, and S.C. Cowin, J. Elast. 53, 125. (1998).

    Article  Google Scholar 

  32. J. Kabel, A. Odgaard, B. van Rietbergen, and R. Huiskes, Bone 24, 115. (1999).

    Article  Google Scholar 

  33. E. Mittra, C. Rubin, B. Gruber, and Y.-X. Qin, J. Biomech. 41, 368. (2008).

    Article  Google Scholar 

  34. B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjolfsson, and M. Viceconti, Clin. Biomech. 23, 135. (2008).

    Article  Google Scholar 

  35. V. Boudousq, D.M. Goulart, J.M. Dinten, C.C. de Kerleau, E. Thomas, O. Mares, and P.O. Kotzki, Osteoporos. Int. 16, 813. (2005).

    Article  Google Scholar 

  36. D. Ulrich, B. Van Rietbergen, A. Laib, and P. Ruegsegger, Bone 25, 55. (1999).

    Article  Google Scholar 

  37. S.C. Cowin, Mech. Mater. 4, 137. (1985).

    Article  Google Scholar 

  38. M. Moesen, L. Cardoso, and S.C. Cowin, Mech. Mater. 54, 70. (2012).

    Article  Google Scholar 

  39. R. Moreno, O. Smedby, and D.H. Pahr, Biomech. Model. Mechanobiol. 15, 831. (2016).

    Article  Google Scholar 

  40. B. Van Rietbergen, A. Odgaard, J. Kabel, and R. Huiskes, J. Orthopaed. Res. 16, 23. (1998).

    Article  Google Scholar 

  41. C.H. Turner, S.C. Cowin, J.Y. Rho, R.B. Ashman, and J.C. Rice, J. Biomech. 23, 549. (1990).

    Article  Google Scholar 

  42. J. Kabel, B. van Rietbergen, A. Odgaard, and R. Huiskes, Bone 25, 481. (1999).

    Article  Google Scholar 

  43. C. Yang, Y. Kim, S. Ryu, and G.X. Gu, Mater. Design. 189, 108509. (2020).

    Article  Google Scholar 

  44. C. Yang, Y. Kim, S. Ryu, and G.X. Gu, MRS Commun. 9, 609. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. James Schmitz at UT Health San Antonio for technical assistance in the acquisition of microCT scans of human cadaveric proximal femur samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufei Huang or Xiaodu Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, P., Zhang, T., Haque, E. et al. Prediction of Elastic Behavior of Human Trabecular Bone Using A DXA Image-Based Deep Learning Model. JOM 73, 2366–2376 (2021). https://doi.org/10.1007/s11837-021-04704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04704-z

Navigation