Skip to main content
Log in

Boosting Thermoelectric–Mechanical Properties of BiSb-Based Material by SiC Nanocomposites

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The intensification of improving bismuth antimony properties can largely be attributed to its attractive thermoelectric characteristics. However, insufficient mechanical investigation could inhibit its practical applications. In the present study, silicon carbide (SiC) nanoparticles were embedded into (Bi85Sb15)1−xSiCx (x = 0.0 wt.%, 0.25  wt.%, 0.5 wt.%, 0.75 wt.%, and 1.0 wt.%) by mechanical alloying and subsequent spark plasma consolidation. The morphologic, thermoelectric, and mechanical properties (represent in the hardness and bending strength) have been characterized and discussed. SiC nanoparticles associate, creating new interfaces and point defects in the matrix. The lowest SiC fraction independently increases the electrical conductivity. However, all the samples showed an improvement in the Seebeck coefficient and a suppression if the thermal conductivity. The composite of 0.5 wt.% SiC enhanced the ZT to 0.27, which is up to 60% higher compared to higher pristine matrix. The incorporation of SiC nanoparticles simultaneously boosted the hardness, bending strength, and thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Freer, and A.V. Powell, J. Mater. Chem. C 8, 441 (2020).

    Article  Google Scholar 

  2. G.J. Snyder, and A.H. Snyder, Energy Environ. Sci. 10, 2280 (2017).

    Article  Google Scholar 

  3. T. Zou, W. Xie, X. Qin, M. Zhou, M. Widenmeyer, J. Xu, J. He, and A. Weidenkaff, J. Mater. 2, 273 (2016).

    Google Scholar 

  4. A.A. Sirusi, and J.H. Ross, in Annual Reports on NMR Spectroscopy. ed. by G.A. Webb (Academic, London, 2017), pp. 137–198.

    Google Scholar 

  5. Y. Mishima, Y. Kimura, and S. Wng Kim, in Nanomaterials. ed. by H. Hosono, Y. Mishima, H. Takezoe, K.J.D. MacKenzie, K. MacKenzie, Y. Mishima, and H. Takezoe (Elsevier, Oxford, 2006), pp. 383–418.

    Chapter  Google Scholar 

  6. J. Sharp, Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2016).

    Google Scholar 

  7. L.D.D. Zhao, B.-P.P. Zhang, J.-F.F. Li, H.L.L. Zhang, and W.S.S. Liu, Solid State Sci. 10, 651 (2008).

    Article  Google Scholar 

  8. R. Yang and G. Chen, Mater. Integr. 18, 31 (2006).

    Google Scholar 

  9. X. Devaux, F. Brochin, A. Dauscher, B. Lenoir, R. Martin-Lopez, H. Scherrer, and S. Scherrer, Nanostruct. Mater. 8, 137 (1997).

    Article  Google Scholar 

  10. B. Lenoir, X. Devaux, A. Dauscher, and H. Scherrer, Mater. Sci. Eng. 248, 147 (1998).

    Article  Google Scholar 

  11. B. Landschreiber, E. Güneş, G. Homm, C. Will, P. Tomeš, C. Rohner, A. Sesselmann, P.J. Klar, S. Paschen, E. Müller, and S. Schlecht, J. Electron. Mater. 42, 2356 (2013).

    Article  Google Scholar 

  12. Y.S. Hor, and R.J. Cava, J. Alloys Compd. 479, 368 (2009).

    Article  Google Scholar 

  13. R. Martin-Lopez, B. Lenoir, X. Devaux, A. Dauscher, and H. Scherrer, Mater. Sci. Eng. A 248, 147 (1998).

    Article  Google Scholar 

  14. M.S. El-Asfoury, M.N.A. Nasr, K. Nakamura, and A. Abdel-Moneim, Jpn. J. Appl. Phys. 55, 045802 (2016).

    Article  Google Scholar 

  15. M.S. El-Asfoury, M.N.A. Nasr, K. Nakamura, and A. Abdel-Moneim, J. Alloys Compd. 745, 331–340 (2018).

    Article  Google Scholar 

  16. H. Noguchi, H. Kitagawa, T. Kiyabu, K. Hasezaki, and Y. Noda, J. Phys. Chem. Solids 68, 91 (2007).

    Article  Google Scholar 

  17. Z. Chen, Y. Han, M. Zhou, C. Song, R. Huang, Y. Zhou, and L. Li, J. Phys. Chem. Solids 75, 523 (2014).

    Article  Google Scholar 

  18. M. Zhou, Z. Chen, X. Chu, and L. Li, J. Electron. Mater. 41, 1263 (2012).

    Article  Google Scholar 

  19. P. Qin, Z.-H. Ge, and J. Feng, J. Alloys Compd. 696, 782 (2017).

    Article  Google Scholar 

  20. B. Madavali, C.-H. Lee, H.-S. Kim, K.-H. Lee, and S.-J. Hong, Int. J. Appl. Ceram. Technol. 15, 125 (2018).

    Article  Google Scholar 

  21. J. Li, Q. Tan, J.-F. Li, D.-W. Liu, F. Li, Z.-Y. Li, M. Zou, and K. Wang, Adv. Funct. Mater. 23, 4317 (2013).

    Article  Google Scholar 

  22. D. Zhang, J. Lei, W. Guan, Z. Ma, C. Wang, L. Zhang, Z. Cheng, and Y. Wang, J. Alloys Compd. 784, 1276 (2019).

    Article  Google Scholar 

  23. Y. Pan, U. Aydemir, F.-H. Sun, C.-F. Wu, T.C. Chasapis, G.J. Snyder, and J.-F. Li, Adv. Sci. 4, 1700259 (2017).

    Article  Google Scholar 

  24. K. Yin, X. Su, Y. Yan, H. Tang, M.G. Kanatzidis, C. Uher, and X. Tang, Scr. Mater. 126, 1 (2017).

    Article  Google Scholar 

  25. Z.-Y. Li, J.-F. Li, W.-Y. Zhao, Q. Tan, T.-R. Wei, C.-F. Wu, and Z.-B. Xing, Appl. Phys. Lett. 104, 113905 (2014).

    Article  Google Scholar 

  26. M. Fan, Y. Zhang, Q. Hu, Y. Zhang, X.-J. Li, and H. Song, Ceram. Int. 45, 17723 (2019).

    Article  Google Scholar 

  27. Q. Hu, K. Wang, Y. Zhang, X. Li, and H. Song, Mater. Res. Express 5, 45510 (2018).

    Article  Google Scholar 

  28. R. Inoue, J. Nakano, T. Nakamura, T. Ube, T. Iida, and Y. Kogo, J. Alloys Compd. 775, 657 (2019).

    Article  Google Scholar 

  29. K. Malik, D. Das, D. Mondal, D. Chattopadhyay, A.K. Deb, S. Bandyopadhyay, and A. Banerjee, J. Appl. Phys. 112, 83706 (2012).

    Article  Google Scholar 

  30. B. Feng, G. Li, X. Hu, P. Liu, R. Li, Y. Zhang, Y. Li, Z. He, and X. Fan, J. Alloys Compd. 818, 152899 (2020).

    Article  Google Scholar 

  31. Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, Sci. Rep. 5, 10718 (2015).

    Article  Google Scholar 

  32. H. Yoshioka, and K. Hirata, AIP Adv. 8, 45217 (2018).

    Article  Google Scholar 

  33. T.G. Novak, K. Kim, and S. Jeon, Nanoscale 11, 19684 (2019).

    Article  Google Scholar 

  34. L.-D. Zhao, B.-P. Zhang, W.-S. Liu, and J.-F. Li, J. Appl. Phys. 105, 023704 (2009).

    Article  Google Scholar 

  35. D. Li, X.Y. Qin, Y.F. Liu, N.N. Wang, C.J. Song, and R.R. Sun, RSC Adv. 3, 2632 (2013).

    Article  Google Scholar 

  36. J. Misiewicz, R. Kudrawiec, and G. Sek, in Dilute Nitride Semiconductors. ed. by M. Henini (Elsevier, Amsterdam, 2005), pp. 279–324.

    Chapter  Google Scholar 

  37. Q. Zhang, L. Cheng, W. Liu, Y. Zheng, X. Su, H. Chi, H. Liu, Y. Yan, X. Tang, and C. Uher, Phys. Chem. Chem. Phys. 16, 23576 (2014).

    Article  Google Scholar 

  38. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

    Article  Google Scholar 

  39. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).

    Article  Google Scholar 

  40. J.-F. Li, and J. Liu, Phys. Status Solidi 203, 3768 (2006).

    Article  Google Scholar 

  41. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  42. Y. Liu, X. Jiang, J. Shi, Y. Luo, Y. Tang, Q. Wu, and Z. Luo, Nanotechnol. Rev. 9, 190 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Hiroyuki Nakamura at the Department of Materials Science and Engineering, Kyoto University, Kyoto, Japan, for providing the experimental devices (thermoelectric measurement system) required for finishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. El-Asfoury.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Asfoury, M.S., Abdou, S.M. & Nassef, A. Boosting Thermoelectric–Mechanical Properties of BiSb-Based Material by SiC Nanocomposites. JOM 73, 2808–2818 (2021). https://doi.org/10.1007/s11837-021-04699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04699-7

Navigation