Skip to main content
Log in

Porous Metal Properties Analysis: A Machine Learning Approach

  • Machine Learning in Design, Synthesis, and Characterization of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the past few decades, computer-aided techniques (i.e., numerical simulation) have complemented the research and development process (R&D) in material sciences. This approach is usually paired to experimental testing. Yet, both techniques have shown cost-efficiency disadvantages and are time consuming. Optimization algorithms like the ones used in machine learning have proven to be an alternative tool when dealing with lots of data and finding a solution. While the use of machine learning is a well-established technique in other research fields, its application in material science is relatively new. Material informatics provide a new approach to analyse materials such as porous metals by employing previous data sets. This article aims to study reliability to predict permeability and Forchheimers coefficient of lost carbonate sintering open-cell porous metal. The key features selected as predictors are porosity, pore size, and coordination number. A comparison among multiple linear regression, polynomial regression, random forest regressor and artificial neural network is revised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.D. Conduit, N.G. Jones, H.J. Stone, and G.J. Conduit, Scr. Mater. 146, 82. (2018).

    Article  Google Scholar 

  2. K. Matouš, M.G.D. Geers, V.G. Kouznetsova, and A. Gillman, J. Comput. Phys. 330, 192. (2017).

    Article  MathSciNet  Google Scholar 

  3. T. Lookman, P.V. Balachandran, D. Xue, J. Hogden, and J. Theiler, Curr. Opin. Solid State Mater. Sci. 21, 121. (2017).

    Article  Google Scholar 

  4. J.H. Panchal, S.R. Kalidindi, D.L. McDowell, and C.A.D. Comput, Aided Des. 45, 4. (2013).

    Article  Google Scholar 

  5. A. Gupta, A. Cecen, S. Goyal, A.K. Singh, and S.R. Kalidindi, Acta Mater. 91, 239. (2015).

    Article  Google Scholar 

  6. K. Rajan, Mater. Today 8, 38 (2005).

    Article  Google Scholar 

  7. J.M. Rondinelli, N.A. Benedek, D.E. Freedman, A. Kavner, E.E. Rodriguez, E.S. Toberer, and L. W. Martin, Am. Ceram. Soc. Bull. 92, 14. (2013).

    Google Scholar 

  8. B. Meredig, Curr. Opin. Solid State Mater. Sci. 21, 159. (2017).

    Article  Google Scholar 

  9. A. Agrawal and A. Choudhary, APL Mater. 4, 053208. (2016).

    Article  Google Scholar 

  10. L. Himanen, A. Geurts, A. S. Foster, and P. Rinke, Adv. Sci. 6, 1900808. (2019).

    Article  Google Scholar 

  11. A. Çeçen, T. Fast, E.C. Kumbur, and S.R. Kalidindi, J. Power Sources 245, 144. (2014).

    Article  Google Scholar 

  12. G. Tapia, A.H. Elwany, and H. Sang, Addit. Manuf. 12, 282. (2016).

    Google Scholar 

  13. M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M.A. Tschopp, and L. Bian, J. Manuf. Syst. 47, 69. (2018).

    Article  Google Scholar 

  14. M. Pardakhti, E. Moharreri, D. Wanik, S.L. Suib, R. Srivastava, and A.C.S. Comb, Sci. 19, 640. (2017).

    Google Scholar 

  15. A.J. Skinner, and J.Q. Broughton, Model. Simul. Mater. Sci. Eng. 3, 371. (1995).

    Article  Google Scholar 

  16. M. Dudzik and A.M. Strȩk, Math. Probl. Eng. 2020, 1. (2020).

    Article  Google Scholar 

  17. S. Altarazi, M. Ammouri, and A. Hijazi, Comput. Mater. Sci. 153, 1. (2018).

    Article  Google Scholar 

  18. Z. Xiao, and Y. Zhao, J. Mater. Res. 28, 2545. (2013).

    Article  Google Scholar 

  19. J.M. Baloyo and Y. Zhao, MRS Proc. 1779, 39. (2015).

    Article  Google Scholar 

  20. E. Avalos-Gauna, Numerical Simulation of Active Cooling Using Porous Metals, PhD Thesis, (University of Liverpool, 2017), pp. 126-187.

  21. E. Avalos Gauna and Y. Zhao, Metall. Mater. Trans. B (2017).

  22. W. Lu, R. Xiao, J. Yang, H. Li, and W. Zhang, J. Mater. 3, 191. (2017).

    Article  Google Scholar 

  23. S. Raschka, Python machine learning, 1st edn. (Packt Publishing, Birmingham, 2015), pp 110–111.

    Google Scholar 

  24. S.S. Skiena, The data science design manual, 1st edn. (Springer, 2017), pp 103–104.

    Book  Google Scholar 

  25. H. Ohno, Appl. Soft Comput. J. 46, 17. (2016).

    Article  Google Scholar 

  26. E. Bélisle, Z. Huang, S. Le Digabel, and A.E. Gheribi, Comput. Mater. Sci. 98, 170. (2015).

    Article  Google Scholar 

  27. Y. Zhao, J. Powder Metall. Min. 02, 2. (2013).

    Article  Google Scholar 

  28. J. Banhart, Prog. Mater. Sci. 46, 559. (2001).

    Article  Google Scholar 

  29. Ö. Baǧci, M. Özdemir, and N. Dukhan, Transp. Porous Media 104, 501. (2014).

    Article  Google Scholar 

  30. J. M. Baloyo, Porous Metals with Novel Structures for Optimum Heat Exchange Performance, PhD Thesis, (University of Liverpool, 2016), pp. 21–33.

  31. M. Faiz, Comparison of Porous Media Permeability: Experimental, Analytical and Numerical Methods, PhD Thesis, (Loughborough University, 2014), pp. 7–34.

  32. J. Despois, and A. Mortensen, Acta Mater. 53, 1381. (2005).

    Article  Google Scholar 

  33. C. Xin, Z. Rao, X. You, Z. Song, and D. Han, Energy Convers. Manag. 78, 1. (2014).

    Article  Google Scholar 

  34. D. Forsyth, Probability and statistics for computer science, 1st edn. (Springer International Publishing, UK, 2018), pp 308–313.

    Book  Google Scholar 

  35. M. Bowles, Machine learning in python, essential techniques for predictive analysis, 10th edn. (John Wiley & Sons Inc, Indianapolis, IN, 2015), pp 211–253.

    Book  Google Scholar 

  36. C.M. Bishop, Pattern recognition and machine learning, 9th edn. (Springer, New York, 2006), pp 663–665.

    MATH  Google Scholar 

  37. N. Artrith, and A. Urban, Comput. Mater. Sci. 114, 135. (2016).

    Article  Google Scholar 

  38. T.M. Ahmed, P.L. Green, and H.A. Khalid, Road Mater. Pavement Des. 18, 141. (2017).

    Article  Google Scholar 

  39. H. Chiroma, S. Abdulkareem, and A. Gital, Proc. Int. I, 10. (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Avalos-Gauna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avalos-Gauna, E., Zhao, Y., Palafox, L. et al. Porous Metal Properties Analysis: A Machine Learning Approach. JOM 73, 2039–2049 (2021). https://doi.org/10.1007/s11837-021-04695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04695-x

Navigation