Skip to main content

Phase Equilibria Study of CaO-Al2O3-SiO2-Na2O Slags for Smelting Waste Printed Circuit Boards

Abstract

Phase equilibria of CaO-Al2O3-SiO2-Na2O slags were studied by thermal equilibration and quenching. The primary phases of the quenched slags were identified, and their equilibrium compositions determined by electron probe microanalysis. Liquidus temperatures of the slags were bracketed within an uncertainty of ± 10–20°C. Anorthite (CaO·Al2O3·2SiO2), gehlenite (2CaO·Al2O3·SiO2), pseudowollastonite (CaO·SiO2), and larnite (2CaO·SiO2) were observed as primary phases. Progressive doping by Na2O substantially changed the slag liquidus temperature, shifting the primary phase from anorthite to pseudowollastonite and larnite, and gehlenite to larnite. The liquidus temperature decreased significantly with increasing Na2O in slags with CaO/SiO2 (C/S) ratios of 0.3 and 0.6, while the liquidus temperature increased for slags with a C/S ratio of 1.0. The solid solubility of Na2O in the phases was quantified. Finally, the relevance of the phase equilibria study of the CaO-Al2O3-SiO2-Na2O system was discussed with regard to the optimum design of smelting with a focus on value recovery from e-waste.

This is a preview of subscription content, access via your institution.

Fig. 1

Adapted from Ref. 32.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A. Golev, D.R. Schmeda-Lopez, S.K. Smart, G.D. Corder, and E.W. McFarland, Waste Manag. 58, 348 (2016).

    Article  Google Scholar 

  2. 2.

    A. Golev, G.D. Corder, and M.A. Rhamdhani, Miner. Eng. 137, 171 (2019).

    Article  Google Scholar 

  3. 3.

    H. Duan, K. Hou, J. Li, and X. Zhu, J. Environ. Manag. 92, 392 (2011).

    Article  Google Scholar 

  4. 4.

    M. Kaya, Encyclopedia of Renewable and Sustainable Materials, ed. S. Hashimi, and I. A. Choudhary (Amsterdam: Elsevier, 2020) p. 658.

  5. 5.

    C. Yang, J. Li, Q. Tan, L. Liu, Q. Dong, and A.C.S. Sustain, Chem. Eng. 5, 3524 (2017).

    Google Scholar 

  6. 6.

    H. Li, J. Eksteen, and E. Oraby, Resour. Conserv. Recycl. 139, 122 (2018).

    Article  Google Scholar 

  7. 7.

    X. Zeng, C. Yang, J.F. Chiang, and J. Li, Sci. Total Environ. 575, 1 (2017).

    Article  Google Scholar 

  8. 8.

    X. Zeng, J.A. Mathews, and J. Li, Environ. Sci. Technol. 52, 4835 (2018).

    Article  Google Scholar 

  9. 9.

    B. Chen, J. He, Y. Xi, X. Zeng, I. Kaban, J. Zhao, and H. Hao, J. Hazard. Mater. 364, 388 (2019).

    Article  Google Scholar 

  10. 10.

    H.S. Park, and Y.J. Kim, J. Hazard. Mater. 365, 659 (2019).

    Article  Google Scholar 

  11. 11.

    R. Jha, M.D. Rao, A. Meshram, H.R. Verma, and K.K. Singh, J. Cleaner Prod. 15, 121621 (2020).

    Article  Google Scholar 

  12. 12.

    I. Birloaga, I.D. Michelis, F. Ferella, M. Buzatu, and F. Vegliò, Waste Manag. 33, 935 (2013).

    Article  Google Scholar 

  13. 13.

    H.S. Park, Y.S. Han, J.H. Park, and A.C.S. Sustain, Chem. Eng. 7, 14119 (2019).

    Google Scholar 

  14. 14.

    J. Beiyuan, D.C. Tsang, M. Valix, W. Zhang, X. Yang, Y.S. Ok, and X.D. Li, Chemosphere 166, 489 (2017).

    Article  Google Scholar 

  15. 15.

    H. Garg, N. Nagar, G. Ellamparuthy, S.I. Angadi, and C.S. Gahan, Heliyon 5, e02883 (2019).

    Article  Google Scholar 

  16. 16.

    P.M. Petter, H.M. Veit, and A.M. Bernardes, Waste Manag. 34, 475 (2014).

    Article  Google Scholar 

  17. 17.

    K. Li, and Z. Xu, J. Cleaner Prod. 227, 794 (2019).

    Article  Google Scholar 

  18. 18.

    E. Ma, ed. M.N.V. Prasad, and M. Vithanage, Electronic Waste Management and Treatment Technology, (Oxford: Butterworth-Heinemann, 2019), p. 247.

  19. 19.

    N. Swain, and S. Mishra, J. Cleaner Prod. 220, 884 (2019).

    Article  Google Scholar 

  20. 20.

    C. Hagelüken, Erzmetall 59, 152 (2006).

    Google Scholar 

  21. 21.

    A. Khaliq, M.A. Rhamdhani, G. Brooks, and S. Masood, Resources 3, 152 (2014).

    Article  Google Scholar 

  22. 22.

    S.H. Jang, J.W. Han, J.K. Jeong, and J.C. Lee, Mater. Sci. Forum 510, 634 (2006).

    Article  Google Scholar 

  23. 23.

    L. Sun, J. Shi, Z. Yu, and M. Jiang, Ceram. Int. 45, 481 (2019).

    Article  Google Scholar 

  24. 24.

    J. Gran, Y. Wang, and D. Sichen, Calphad 35, 249 (2011).

    Article  Google Scholar 

  25. 25.

    G.K. Moir, and F.P. Glasser, Phys. Chem. Glasses 17, 45 (1976).

    Google Scholar 

  26. 26.

    M. Somerville, R. Davidson, S. Wright, and S. Jahanshahi, J. Sustain. Metall. 3, 486 (2017).

    Article  Google Scholar 

  27. 27.

    X.D. Chen, L.X. Kong, B.A.I. Jin, Z.Q. Bai, and L.I. Wen, J. Fuel Chem. Technol. 44, 263 (2016).

    Article  Google Scholar 

  28. 28.

    M. Li, T. Utigard, and M. Barati, Metall. Mater. Trans. B 46, 74 (2015).

    Article  Google Scholar 

  29. 29.

    B. Zhao, P.C. Hayes, and E. Jak, Miner. Process. Extr. Metall. 121, 32 (2013).

    Article  Google Scholar 

  30. 30.

    M. Cerchez, Ceram. Int. 13, 189 (1987).

    Article  Google Scholar 

  31. 31.

    R. Rait, Phase equilibria in iron bath smelting type slags (PhD Thesis, University of Melbourne, 1997).

  32. 32.

    Phase Diagrams for Ceramists, (Westerville, OH: American Ceramic Society, 1975), p. 630.

  33. 33.

    G.A. Rankin, and F.E. Wright, Am. J. Sci. 1, 1 (1915).

    Article  Google Scholar 

  34. 34.

    E. Haccuria, T. Crivits, P.C. Hayes, and E. Jak, J. Am. Ceram. Soc. 99, 691 (2016).

    Article  Google Scholar 

  35. 35.

    H. Mao, M. Hillert, M. Selleby, and B. Sundman, J. Am. Ceram. Soc. 89, 298 (2006).

    Article  Google Scholar 

  36. 36.

    G. Eriksson, and A.D. Pelton, Metall. Trans. B 24, 807 (1993).

    Article  Google Scholar 

  37. 37.

    A.Y. Ilyushechkin, X. Chen, and D.G. Roberts, Fuel Process. Technol. 179, 86 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Tom Austin and the Materials Characterization team of CSIRO Mineral Resources for their support to run the experiments and characterise the samples. Also, the support of BCSIR is gratefully acknowledged to arrange leave for Mr. Khairul Islam.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md Khairul Islam.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, M.K., Somerville, M., Pownceby, M.I. et al. Phase Equilibria Study of CaO-Al2O3-SiO2-Na2O Slags for Smelting Waste Printed Circuit Boards. JOM 73, 1889–1898 (2021). https://doi.org/10.1007/s11837-021-04683-1

Download citation