Skip to main content

Synthesis of Value-Added Ferrous Material from Electric Arc Furnace (EAF) Slag and Spent Coffee Grounds

Abstract

The current work is based on the process study and synthesis of value-added ferrous material from EAF (electric arc furnace) slag through reduction and melting using a waste carbon resource of spent coffee grounds. Spent coffee grounds were carbonized at 400°C to obtain transformed-spent coffee grounds. Pitch coke has also been used in the current study as a separate carbon source to compare the results obtained from using transformed-spent coffee grounds. A two-stages process has been employed in which a relatively low temperature of 1200°C was used to ensure solid-state reduction followed by melting at 1550°C. Overall, the performance of transformed-spent coffee grounds was better than that of pitch coke, thus giving rise to the potential utilization of waste materials like EAF slag and spent coffee grounds as secondary ferrous and carbon resources for iron and steelmaking applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. X. Zhang, J. Chen, J. Jiang, J. Li, R.D. Tyagi, and R.Y. Surampalli, Environ. Geochem. Health 42, 1321. (2020).

    Article  Google Scholar 

  2. Z. Xian-Lin, Z. De-Qing, P. Jian, and W. Teng-Jiao, ISIJ Int. 55, 1347. (2015).

    Article  Google Scholar 

  3. Worldsteel, “FACT SHEET Steel industry co-products” (2018), https://www.worldsteel.org/en/dam/jcr:1b916a6d-06fd-4e84-b35d-c1d911d18df4/Fact_By-products_2018.pdf. Accessed 20th November 2020.

  4. Y.N. Dhoble, and S. Ahmed, J. Mater. Cycles Waste Manag. 20, 1373 (2018).

    Article  Google Scholar 

  5. J. Manchisi, E. Matinde, N.A. Rowson, M.J.H Simmons, G.S. Simate, S. Ndlovu and B. Mwewa, Sustainability, 12, 2118. (2020).

  6. I.Z. Yildirim and M. Prezzi, Adv. Civ. Eng., 2011. (2011).

  7. Nippon Slag Association, “Chemical composition for iron and steel slag”, http://www.slg.jp/e/slag/character.html. Accessed 20th November 2020.

  8. G.J. Ma, Y. Fang, and H. Tang, Adv. Mat. Res. 225–226, 812. (2011).

    Google Scholar 

  9. Y. Guo, J. Xie, J. Zhao, and K. Zuo, Constr. Build. Mater. 204, 41. (2019).

    Article  Google Scholar 

  10. A. Liapis, E.K. Anastasiou, M. Papachristoforou, and I. Papayianni, J. Sustain. Metall. 4, 68. (2018).

    Article  Google Scholar 

  11. D. Claveau-Mallet, S. Wallace, and Y. Comeau, Water Res. 47, 1512. (2013).

    Article  Google Scholar 

  12. B.M. Mercado-Borrayo, J.L. González-Chávez, R.M. Ramírez-Zamora, and R. Schouwenaars, J. Sustain. Metall. 4, 50. (2018).

    Article  Google Scholar 

  13. “National Waste Report 2018’, (2018), https://www.environment.gov.au/system/files/resources/7381c1de-31d0-429b-912c-91a6dbc83af7/files/national-waste-report-2018.pdf. Accessed 22nd November 2020.

  14. D. Guo, M. Hu, C. Pu, B. Xiao, Z. Hu, S. Liu, X. Wang, and X. Zhu, Int. J. Hydrog. Energy 40, 4733. (2015).

    Article  Google Scholar 

  15. H. Suopajärvi, A. Kemppainen, J. Haapakangas, and T. Fabritius, J. Clean. Prod. 148, 709. (2017).

    Article  Google Scholar 

  16. H. Suopajärvi, K. Umeki, E. Mousa, A. Hedayati, H. Romar, A. Kemppainen, C. Wang, A. Phounglamcheik, S. Tuomikoski, N. Norberg, A. Andefors, M. Öhman, U. Lassi, and T. Fabritius, Appl. Energy 213, 384. (2018).

    Article  Google Scholar 

  17. U. Kumar, S. Maroufi, R. Rajarao, M. Mayyas, I. Mansuri, R.K. Joshi, and V. Sahajwalla, J. Clean. Prod. 158, 218. (2017).

    Article  Google Scholar 

  18. R.Z. Abd Rashid, H. Mohd, M.H. Salleh, N.A. Ani, T.A. Yunus, and H. Purwanto, Renew. Energy 63, 617. (2014).

    Google Scholar 

  19. E. Bedford, “Coffee market worldwide”, (Statista-Web report 2020), https://www.statista.com/study/70519/coffee-market-worldwide/. Accessed 22nd November 2020.

  20. “The significant value of spent coffee grounds”, (bio-bean article 2019), https://www.bio-bean.com/news-post/the-significant-value-of-spent-coffee-grounds/. Accessed 22nd November 2020.

  21. D.R. Vardon, B.R. Moser, W. Zheng, K. Witkin, R.L. Evangelista, T.J. Strathmann, K. Rajagopalan, B.K. Sharma, and A.C.S. Sustain, Chem. Eng. 1, 1286. (2013).

    Google Scholar 

  22. X.C. Schmidt Rivera, A. Gallego-Schmid, V. Najdanovic-Visak, and A. Azapagic, Resour. Conserv. Recyl. 157, 104751. (2020).

    Article  Google Scholar 

  23. S. Luo, Y. Zhou, and C. Yi, J. Renew. Sustain. Energy 5, 063114. (2013).

    Article  Google Scholar 

  24. T. Norgate, N. Haque, M. Somerville, and S. Jahanshahi, ISIJ Int. 52, 1472. (2012).

    Article  Google Scholar 

  25. G. Fick, O. Mirgaux, P. Neau, and F. Patisson, Waste Biomass Valoriz. 5, 43. (2014).

    Article  Google Scholar 

  26. Q. Wang, Z. Yang, J. Tian, W. Li, and J. Sun, Ironmak. Steelmak. 24, 457. (1997).

    Google Scholar 

  27. S. Dutta, Kinetics and mechanism of iron ore-—Coal composite pellets reduction. Trans. Indian Inst. Met. 58, 801. (2005).

    Google Scholar 

  28. Z. Zuo, Q. Yu, H. Xie, F. Yang, Z. Han, and Q. Qin, Environ. Technol. 41(17), 2240. (2020).

    Article  Google Scholar 

  29. A.A. El-Geassy, and V. Rajakumar, Trans. Iron Steel Inst. Jpn 25, 449. (1985).

    Article  Google Scholar 

  30. H.M. Ahmed, N.N. Viswanathan, and B. Björkman, Ironmak. Steelmak. 44, 66. (2017).

    Article  Google Scholar 

  31. D. Spreitzer, and J. Schenk, Metall. Mater. Trans. B 50, 2471. (2019).

    Article  Google Scholar 

  32. D. Spreitzer, and J. Schenk, Steel Res. Int. 90, 1900108. (2019).

    Article  Google Scholar 

  33. L. Zhang, Y. Zhu, W. Yin, B. Guo, F. Rao, and J. Ku, ACS Omega 5, 8605. (2020).

    Article  Google Scholar 

  34. P.C. Beuria, S.K. Biswal, B.K. Mishra, and G.G. Roy, Int. J. Min. Sci. Technol. 27(6), 1031. (2017).

    Article  Google Scholar 

  35. M. Eissa, A. Ahmed and M. El-Fawkhry, J. Metall. 2015. (2015).

  36. C. Liu, M. Guo, L. Pandelaers, B. Blanpain, S. Huang, P. Wollants, and B.H.M. Berg, Hüttenmänn. Monats. 162, 258. (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research was cooperated under Australian Research Council’s Industrial Transformation Research Hub funding scheme (project IH130200025). The authors acknowledge the technical support from the staff at Mark Wainwright Analytical Centre at the University of New South Wales for their help with XRF, XRD and SEM-EDS analyses. The authors also thank ALS Global, Lithgow, Australia for their kind help with ultimate and proximate analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smitirupa Biswal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswal, S., Pahlevani, F. & Sahajwalla, V. Synthesis of Value-Added Ferrous Material from Electric Arc Furnace (EAF) Slag and Spent Coffee Grounds. JOM 73, 1878–1888 (2021). https://doi.org/10.1007/s11837-021-04678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04678-y