Skip to main content
Log in

BaCe0.5Zr0.3Y0.2O3-La0.8Sr0.2Cr0.75Mn0.25O3 Composite Membrane for Hydrogen Separation

  • Materials Recovery Considerations for Design of Next-generation Functional Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A dual-phase membrane was developed for hydrogen separation. A BaCe0.5Zr0.3Y0.2O3 (BCZY) phase provided a proton conduction pathway while A La0.8Sr0.2Cr0.75Mn0.25O3 (LSCrMn) phase provided an electronic conduction pathway for effective hydrogen permeation. Once each perovskite phase had formed, the powder mixture was attrition-milled and dry-pressed. After sintering a porous–dense–porous trilayer, the phase purity was confirmed by x-ray diffraction. Usage of a powder blanket was critical to avoid undesired phase formation in addition to LSCrMn and BCZY. Total conductivity of the composite was measured to confirm the 3D connectivity of the LSCrMn phase. The hydrogen flux was larger than 2 mL min−1 cm−2, demonstrating the effectiveness of the dual-phase design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Tao, L. Yan, J. Qiao, B. Wang, L. Zhang and J. Zhang, Prog. Mater. Sci. 74, 1. (2015).

    Article  Google Scholar 

  2. N.W. Ockwig and T.M. Nenoff, Chem. Rev. 107, 4078. (2007).

    Article  Google Scholar 

  3. L. Barelli, G. Bidini, F. Gallorini and S. Servili, Energy 33, 554. (2008).

    Article  Google Scholar 

  4. J.W. Phair and S.P.S. Badwal, Ionics 12, 103. (2006).

    Article  Google Scholar 

  5. K.D. Kreuer, Annu. Rev. Mater. Res. 33, 333. (2003).

    Article  Google Scholar 

  6. K. Katahira, Y. Kohchi, T. Shimura and H. Iwahara, Solid State Ionics 138, 91. (2000).

    Article  Google Scholar 

  7. S. Ricote, N. Bonanos and G. Caboche, Solid State Ionics 180, 990. (2009).

    Article  Google Scholar 

  8. A.S. Yu, T.-S. Oh, R. Zhu, A. Gallegos, R.J. Gorte and J.M. Vohs, Faraday Discuss. 182, 213. (2015).

    Article  Google Scholar 

  9. N. Nagabhushana, J. A. Lane, G. M. Christie and B. A. van Hassel, US Patent US7556676

  10. C.F. Miller, J. Chen, M.F. Carolan and E.P. Foster, Catal. Today 228, 152. (2014).

    Article  Google Scholar 

  11. A.S. Yu, J. Kim, T.-S. Oh, G. Kim, R.J. Gorte and J.M. Vohs, Appl. Catal. A Gen. 486, 259. (2014).

    Article  Google Scholar 

  12. M. Hakim, J.H. Joo, C.-Y. Yoo, B.-K. Kim and J.H. Yu, J. Eur. Ceram. Soc. 35, 1855. (2015).

    Article  Google Scholar 

  13. S. Nikodemski, J. Tong and R. O’Hayre, Solid State Ionics 253, 201. (2013).

    Article  Google Scholar 

  14. R. Kungas, J.-S. Kim, J.M. Vohs and R.J. Gorte, J. Am. Ceram. Soc. 94, 2220. (2011).

    Article  Google Scholar 

  15. P. Babilo, T. Uda and S.M. Haile, J. Mater. Res. 22, 1322. (2007).

    Article  Google Scholar 

  16. A.S. Yu, J.M. Vohs and R.J. Gorte, Energy Environ. Sci. 7, 944. (2014).

    Article  Google Scholar 

  17. X. Qi, F.T. Akin and Y.S. Lin, J. Membr. Sci. 193, 185. (2001).

    Article  Google Scholar 

  18. H. Scott Fogler, Elements of Chemical Reaction Engineering, (Prentice Hall, New York, 2016).

  19. K.P. Ong, P. Wu, L. Liu and S.P. Jiang, Appl. Phys. Lett. 90, 044109. (2007).

    Article  Google Scholar 

  20. S. Gupta, M.K. Mahapatra and P. Singh, Mater. Res. Bull. 48, 3261. (2013).

    Google Scholar 

  21. J. Lyagaeva, G. Vdovin, L. Hakimova, D. Medvedev, A. Demin and P. Tsiakaras, Electrochim. Acta 251, 554. (2017).

    Article  Google Scholar 

  22. J.S. Fish, S. Ricote, R. O’Hayre and N. Bonanos, J. Mater. Chem. A 3, 5392. (2015).

    Article  Google Scholar 

  23. E. Rebollo, C. Mortalò, M. Cecilia, S. Escolástico, S. Boldrini, S. Barison, J.M. Serra and M. Fabrizio, Energy Environ. Sci. 8, 3675. (2015).

    Article  Google Scholar 

  24. W.A. Rosensteel, S. Ricote and N. Sullivan, Int. J. Hydrogen Energy 41, 2598. (2016).

    Article  Google Scholar 

  25. Y.-C. Tsai, C.-C. Lin, W.-L. Lin, J.-H. Wang, S.-Y. Chen, P. Lin and P.-W. Wu, J. Power Sour. 274, 965. (2015).

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by Auburn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Sik Oh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, S.C.V., Feyzbar-Khalkhali-Nejad, F., Mahapatra, M.K. et al. BaCe0.5Zr0.3Y0.2O3-La0.8Sr0.2Cr0.75Mn0.25O3 Composite Membrane for Hydrogen Separation. JOM 73, 2122–2128 (2021). https://doi.org/10.1007/s11837-021-04643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04643-9

Navigation