Skip to main content
Log in

Impacts of Mode Mixity on Controlled Spalling of (100)-Oriented Germanium

  • 100 Years of the Griffith Fracture Criteria
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Controlled spalling is a technology to prepare single-crystal thin films of semiconductors by fracture with a subsurface crack propagating nearly parallel to the substrate surface. Practical applications require uniform thickness and a smooth surface across the whole film. Both wafer-scale and patterned-stressor-defined small-area spalling of germanium substrates are conducted experimentally and numerically. River line features are observed on spalled surfaces close to lateral edges of the spall, regardless of the spall direction and the size of the spalled area. Three-dimensional finite element method modeling shows the river lines are caused by mixed mode I + III loading near the lateral edges of spall and predicts a spall depth variation near the lateral edges of spall due to mixed mode I + II loading. The absolute range of river lines increases with lateral size of spall, while the relative range of river lines decreases, consistent with variations in mode mixity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.J. Möller, E. Bitzek, R. Janisch, H. ul Hassan, and A. Hartmaier, J. Mater. Res. 33, 3750–3761. (2018).

    Article  Google Scholar 

  2. R.A. Enrique, and A.V.D. Ven, Appl. Phys. Lett. 110, 021910. (2017).

    Article  Google Scholar 

  3. R.A. Schultz, M.C. Jensen, and R.C. Bradt, Int. J. Fract. 65, 291–312. (1994).

    Article  Google Scholar 

  4. S.W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P.A. Lauro, J.A. Ott, N. Sosa, and D. Sadana, IEEE J. Photovolt. 2, 141–147. (2012).

    Article  Google Scholar 

  5. C.A. Sweet, J.E. McNeely, B. Gorman, D.L. Young, A.J. Ptak, and C.E. Packard, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), p. 1–4 (2015).

  6. C.A. Sweet, K.L. Schulte, J.D. Simon, M.A. Steiner, N. Jain, D.L. Young, A.J. Ptak, and C.E. Packard, Appl. Phys. Lett. 108, 011906. (2016).

    Article  Google Scholar 

  7. S. Bedell, P. Lauro, J. Ott, K. Fogel, and D. Sadana, J. Appl. Phys. 122, 025103. (2017).

    Article  Google Scholar 

  8. S. Bedell, D. Shahrjerdi, K. Fogel, P. Lauro, C. Bayram, B. Hekmatshoar, N. Li, J. Ott, and D. Sadana, Proc. SPIE, 9083 (2014).

  9. B.E. Ley, Wafer-scale controlled spalling and reuse of (100)-oriented germanium, M.Sc. thesis, Colorado School of Mines (2019).

  10. H. Park, C. Lim, C.-J. Lee, M. Choi, S. Jung, and H. Park, Solid State Electron. 163, 107660. (2020).

    Article  Google Scholar 

  11. E.U. Onyegam, J. Mantey, R.A. Rao, L. Mathew, M. Hilali, S. Saha, D. Jawarani, S. Smith, D.A. Ferrer, S.V. Sreenivasan, and S.K. Banerjee, 2011 37th IEEE Photovoltaic Specialists Conference (PVSC), p. 000271–000273 (2011).

  12. N. Zayyoun, T. Pingault, E. Ntsoenzok, L. Laanab, A.G. Ulyashin, A.S. Azar, M. M’Hamdi, J.-P. Blondeau, and M.-R. Ammar, Surf. Topogr. 7, 015005. (2019).

    Article  Google Scholar 

  13. S. King, and G. Antonelli, Thin Solid Films 515, 7232–7241. (2007).

    Article  Google Scholar 

  14. D. Shahrjerdi, S.W. Bedell, C. Bayram, C.C. Lubguban, K. Fogel, P. Lauro, J.A. Ott, M. Hopstaken, M. Gayness, and D. Sadana, Adv. Energy Mater. 3, 566–571. (2013).

    Article  Google Scholar 

  15. N. Jain, D. Crouse, J. Simon, S. Johnston, S. Siol, K.L. Schulte, C.E. Packard, D.L. Young, and A.J. Ptak, IEEE J. Photovolt. 8, 1384–1389. (2018).

    Article  Google Scholar 

  16. S.W. Bedell, K. Fogel, P. Lauro, D. Shahrjerdi, J.A. Ott, and D. Sadana, J. Phys. D 46, 152002. (2013).

    Article  Google Scholar 

  17. S.W. Bedell, D. Shahrjerdi, K. Fogel, P. Lauro, B. Hekmatshoar, N. Li, J. Ott, and D.K. Sadana, ECS Trans. 50, 315–323. (2012).

    Article  Google Scholar 

  18. J. Chen and C.E. Packard, Sol. Energy Mater. Sol. Cells 225, 111018. (2021).

    Article  Google Scholar 

  19. D. Shahrjerdi, and S.W. Bedell, Nano Lett. 13, 315–320. (2013).

    Article  Google Scholar 

  20. J.S. Ward, T. Remo, K. Horowitz, M. Woodhouse, B. Sopori, K. VanSant, and P. Basore, Prog. Photovolta. 24, 1284–1292. (2016).

    Article  Google Scholar 

  21. N. Li, S. Bedell, H. Hu, S.J. Han, X.H. Liu, K. Saenger, and D. Sadana, Adv. Mater. 29, 1606638. (2017).

    Article  Google Scholar 

  22. Z. Suo, and J.W. Hutchinson, Int. J. Solids Struct. 25, 1337–1353. (1989).

    Article  Google Scholar 

  23. Y.H. Lee, Y.-J. Kim, S.M.J. Han, H.-E. Song, and J. Oh, Appl. Phys. Lett. 109, 132101. (2016).

    Article  Google Scholar 

  24. R.V. Gol’dstein, and R.L. Salganik, Int. J. Fract. 10, 507–523. (1974).

    Article  Google Scholar 

  25. R.A. Rao, L. Mathew, D. Sarkar, S. Smith, S. Saha, R. Garcia, R. Stout, A. Gurmu, M. Ainom, E. Onyegam, D. Xu, D. Jawarani, J. Fossum, S. Banerjee, U. Das, A. Upadhyaya, A. Rohatgi, and Q. Wang, 2012 38th IEEE Photovoltaic Specialists Conference, pp. 001837–001840 (2012).

  26. G.D. Quinn, NIST recommended practice guide: fractography of ceramics and glasses, 2nd edn. (National Institute of Standards and Technology, Washington, DC, 2016), pp 5–36.

    Book  Google Scholar 

  27. D.R. Crouse, Controlled spalling in (100)-oriented germanium by electroplating, M.Sc. thesis, Colorado School of Mines (2017).

  28. D. Hull, Int. J. Fract. 70, 59–79. (1994).

    Article  Google Scholar 

  29. E. Sommer, Eng. Fract. Mech. 1, 539–546. (1969).

    Article  Google Scholar 

  30. F. Erdogan, and G.C. Sih, J. Basic Eng. 85, 519–525. (1963).

    Article  Google Scholar 

  31. D. Crouse, J. Simon, K.L. Schulte, D.L. Young, A.J. Ptak, and C.E. Packard, Thin Solid Films 649, 154–159. (2018).

    Article  Google Scholar 

  32. B. Cotterell, and J.R. Rice, Int. J. Fract. 16, 155–169. (1980).

    Article  Google Scholar 

  33. D.D. Pollard, P. Segall, and P.T. Delaney, Geol. Soc. Am. Bull. 93, 1291–1303. (1982).

    Article  Google Scholar 

  34. Y.H. Lee, J. Kim, J. Oh, and A.C.S. Appl, Mater. Interfaces 10, 33230–33237. (2018).

    Article  Google Scholar 

  35. Y. Lee, I. Yang, H.H. Tan, C. Jagadish, S.K. Karuturi, and A.C.S. Appl, Mater. Interfaces 12, 36380–36388. (2020).

    Article  Google Scholar 

  36. K.H. Pham, and K. Ravi-Chandar, Int. J. Fract. 199, 105–134. (2016).

    Article  Google Scholar 

  37. H. Gao, and J.R. Rice, J. Appl. Mech. 53, 774–778. (1986).

    Article  Google Scholar 

  38. W.G. Knauss, Int. J. Fract. Mech. 6, 183–187. (1970).

    Google Scholar 

  39. J.-M. Lee, H. McCrabb, E. Jennings Taylor, and R. Carpio, J. Electrochem. Soc., 153, C265 (2006).

  40. R. Carpio, and A. Jaworski, J. Electrochem. Soc. 166, D3072–D3096. (2018).

    Article  Google Scholar 

  41. J.-B. Leblond, A. Karma, and V. Lazarus, J. Mech. Phys. Solids 59, 1872–1887. (2011).

    Article  MathSciNet  Google Scholar 

  42. K. Pham, and K. Ravi-Chandar, Int. J. Fract. 189, 121–138. (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Air Force Research Laboratory under an agreement with the National Renewable Energy Laboratory. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne E. Packard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chenenko, J. & Packard, C.E. Impacts of Mode Mixity on Controlled Spalling of (100)-Oriented Germanium. JOM 73, 1607–1616 (2021). https://doi.org/10.1007/s11837-021-04639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04639-5

Navigation