Skip to main content
Log in

Solid-phase Relationships in the Tl2Te-Tl2Te3-TlTbTe2 System and Thermodynamic Properties of Thallium–Terbium Tellurides

  • Thermodynamic Considerations for Improved Renewable Energy Production
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work presents new data on the solid-phase equilibria of the Tl-Tb-Te ternary system in the Tl2Te-Tl2Te3-TlTbTe2 composition region and the thermodynamic functions of the TlTbTe2, and Tl9TbTe6 ternary compounds. Studies were carried out by using the electromotive forces method (EFM) and the powder x-ray diffraction technique. From the EMF measurements of the concentration cells of the type (−) TbTe (s) | glycerol + KCl + TbCl3 | (Tb in Tl-Tb-Te alloys) (s) (+) in the 300-450 K temperature interval, the relative partial thermodynamic functions of TbTe and Tb in alloys of the Tl2Te3-TlTe-TlTbTe2, and TlTe-TlTbTe2-Tl9TbTe6 three-phase regions were determined. Based on the solid-phase equilibria diagram, the potential-forming reactions responsible for the indicated partial molar quantities were determined and the standard thermodynamic functions of formation and standard entropies of the TlTbTe2 and Tl9TbTe6 ternary compounds were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.K. Ahluwalia, Applications of Chalcogenides (Springer, New York, 2016)

    Google Scholar 

  2. N. Alonso-Vante, Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions, 1st edn. (Springer, New York, 2018)

    Book  Google Scholar 

  3. R. Scheer, and H.W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (Wiley-VCH, New York, 2011)

    Book  Google Scholar 

  4. P. Woodrow (ed.), Chalcogenides. Advances in Research and Applications (Nova, New York, 2018).

    Google Scholar 

  5. X. Liu, S. Lee, J.K. Furdyna, T. Luo, and Y.H. Zhang (eds.), Chalcogenide. From 3D to 2D and Beyond (Woodhead, New York, 2019).

    Google Scholar 

  6. V.B. Lazarev, Z.Z. Kish, E.Y. Peresh, and E.E. Semrad, Complex Chalcogenides in AI–BIII–CVI Systems (Metallurgy, Moscow, 1993)

    Google Scholar 

  7. M.M. Otrokov, I.I. Klimovskikh, H. Bentmann, A. Zeugner, Z.S. Aliev, S. Gass, A.U.B. Wolter, A.V. Koroleva, D. Estyunin, A.M. Shikin, M. Blanco-Rey, M. Hoffmann, AYu. Vyazovskaya, S.V. Eremeev, Y.M. Koroteev, I.R. Amiraslanov, M.B. Babanly, N.T. Mamedov, N.A. Abdullayev, V.N. Zverev, B. Büchner, E.F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R.C. Vidal, S. Schatz, K. Kisner, C.-H. Min, S.K. Moser, T.R.F. Peixoto, F. Reinert, A. Ernst, P.M. Echenique, A. Isaeva, and E. Chulkov, Nature 576, 416. https://doi.org/10.1038/S41586-019-1840-9 (2019).

    Article  Google Scholar 

  8. H.R.P. Goncalves, C. Luan, I. Antoniazzi, Th. Chagas, Â. Malachias, A.E. Soares, V.E. de Carvalho, R.D. Miquita, R. Magalhães-Paniago, and S.S. Wendell, J. Phys. Chem. 123(23), 14398. https://doi.org/10.1021/acs.jpcc.9b01811 (2019).

    Article  Google Scholar 

  9. S.O. Filnov, I.I. Klimovskikh, D.A. Estyunin, A. Fedorov, V. Voroshnin, A.V. Koroleva, E.V. Shevchenko, A.G. Rybkin, Z.S. Aliev, M.B. Babanly, I.R. Amiraslanov, N.T. Mamedov, E.F. Schwier, K. Miyamoto, T. Okuda, S. Kumar, A. Kimura, V.M. Misheneva, A.M. Shikin, and E.V. Chulkov, Phys. Rev. B. https://doi.org/10.1103/PhysRevB.102.085149 (2020).

    Article  Google Scholar 

  10. A. Isaeva, R. Schoenemann, and T. Doert, Crystals 10(4), 277. https://doi.org/10.3390/cryst10040277 (2020).

    Article  Google Scholar 

  11. S. Bangarigadu-Sanasy, C.R. Sankar, P.A. Dube, J.E. Greedan, and H. Kleinke, J. Alloys Compd. 589, 389. https://doi.org/10.1016/j.jallcom.2013.11.229 (2014).

    Article  Google Scholar 

  12. S.Z. Imamaliyeva, F.M. Sadygov, and M.B. Babanly, Inorg. Mater 44, 935. https://doi.org/10.1134/s0020168508090070 (2008).

    Article  Google Scholar 

  13. M.B. Babanly, S.Z. Imamaliyeva, D.M. Babanly, and F.M. Sadygov, Azerb. Chem. J. 1, 122. (2009).

    Google Scholar 

  14. S.Z. Imamaliyeva, Phys. Chem. Solid State 21(3), 492. https://doi.org/10.15330/pcss.21.3.492-495 (2020).

    Article  Google Scholar 

  15. S.Z. Imamaliyeva, D.M. Babanly, D.B. Tagiev, and M.B. Babanly, Russ. J. Inorg. Chem. 63(13), 1703. https://doi.org/10.1134/S0036023618130041 (2018).

    Article  Google Scholar 

  16. K. Wacker, and Z. Kristallogr, Supple 3, 281. (1991).

    Google Scholar 

  17. T. Doert, and P. Böttcher, Z. Kristallogr. 209, 95. https://doi.org/10.1524/zkri.1994.209.1.95 (1994).

    Article  Google Scholar 

  18. S. Bradtmöller, and P. Böttcher, Z. Anorg. Allg. Chem. 619, 1155. https://doi.org/10.1002/zaac.19936190702 (1993).

    Article  Google Scholar 

  19. W.H. Shah, and W.M. Khan, Thermoelectric Properties of Chalcogenide System, Electromagnetic Field Radiation in Matter. ed. by W.G. Fano, R. Adrian, and P. Larocca (IntechOpen, 2020), p. 1. https://doi.org/10.5772/intechopen.93248.

  20. K. Kurosaki, Y. Takagiwa, and X. Shi, Principles and Concepts for Enhanced Properties (Walter de Gruyte, Amsterdam, 2020)

    Google Scholar 

  21. Y. Shi, C. Sturm, and H. Kleinke, J. Solid State Chem. 270, 273. https://doi.org/10.1016/j.jssc.2018.10.049 (2019).

    Article  Google Scholar 

  22. F. Heinke, L. Eisenburger, R. Schlegel, S. Schwarzmüller, and O. Oeckler, Z. Anorg. Allg. Chem. 643, 447. https://doi.org/10.1002/zaac.201600449 (2017).

    Article  Google Scholar 

  23. Q. Guo, and H. Kleinke, J. Alloys Compd. 630, 37. https://doi.org/10.1016/j.jallcom.2015.01.025 (2015).

    Article  Google Scholar 

  24. M. Piasecki, M.G. Brik, I.E. Barchiy, K. Ozga, I.V. Kityk, A.M. El-Naggar, A.A. Albassam, T.A. Malakhovskaya, and G. Lakshminarayana, J. Alloys Compd. 710, 600. https://doi.org/10.1016/j.jallcom.2017.03.280 (2017).

    Article  Google Scholar 

  25. I.E. Barchij, M. Sabov, A.M. El-Naggar, N.S. AlZayed, A.A. Albassam, A.O. Fedorchuk, and I.V. Kityk, J. Mater. Sci. Mater. Electron. 27, 3901. https://doi.org/10.1007/s10854-015-4240-4 (2016).

    Article  Google Scholar 

  26. K.E. Arpino, B.D. Wasser, and T.M. McQueen, APL Mat. 3(4), 041507. https://doi.org/10.1063/1.4913392 (2015).

    Article  Google Scholar 

  27. K.E. Arpino, D.C. Wallace, Y.F. Nie, T. Birol, P.D.C. King, S. Chatterjee, M. Uchida, S.M. Koohpayeh, J.-J. Wen, K. Page, C.J. Fennie, K.M. Shen, and T.M. McQueen, Phys. Rev. Lett. 112, 017002. https://doi.org/10.1103/PhysRevLett.112.017002 (2014).

    Article  Google Scholar 

  28. G. Ding, J. He, Z. Cheng, X. Wang, and S. Li, J. Mater. Chem. 6, 13269. https://doi.org/10.1039/C8TC03492C (2018).

    Article  Google Scholar 

  29. K. Kurosaki, A. Kosuga, and S. Yamanaka, J. Alloys Compd 351(1), 279. https://doi.org/10.1016/S0925-8388(02)01038-1 (2003).

    Article  Google Scholar 

  30. K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Compd. 376, 3. https://doi.org/10.1016/j.jallcom.2004.01.018 (2004).

    Article  Google Scholar 

  31. C.R. Sankar, S. Bangarigadu-Sanasy, and H. Kleinke, J. Electron. Mater. 41, 1662. https://doi.org/10.1007/s11664-011-1846-z (2012).

    Article  Google Scholar 

  32. M. Duczmal, Structure, wlasciwosci magnetzcyne i pole krzstalicyne w potrojnzch chalkogenkach lantonowcow i talu TlLnX2 (X=S, Se lub Te). Monografie, Politechniki Wroclawskiej, (Wroclaw, 2003), p. 67.

  33. P. Villars, A. Prince, and H. Okamoto, Handbook of ternary alloy phase diagrams (Materials Park, ASM International, 1995)

    Google Scholar 

  34. T. Matsushita, and K. Mukai, Chemical Thermodynamics in Materials Science, From Basics to Practical Applications (Springer, New York, 2018)

    Book  Google Scholar 

  35. M.B. Babanly, L.F. Mashadiyeva, D.M. Babanly, S.Z. Imamaliyeva, D.B. Taghiyev, and Y.A. Yusibov, Russ. J. Inorg. Chem. 13, 1649. https://doi.org/10.1134/S0036023619130035 (2019).

    Article  Google Scholar 

  36. M.B. Babanly, E.V. Chulkov, Z.S. Aliev, A.V. Shevelkov, and I.R. Amiraslanov, Russ. J. Inorg. Chem. 62(13), 1703. https://doi.org/10.1134/S0036023617130034 (2017).

    Article  Google Scholar 

  37. I.F. Mekhdiyeva, P.H. Babayeva, V.P. Zlomanov, and S.Z. Imamaliyeva, New Mater. Compd. Appl. 3, 142. (2019).

    Google Scholar 

  38. S.Z. Imamaliyeva, T.M. Gasanly, F.M. Sadygov, and M.B. Babanly, Inorg. Mater 63(2), 262. https://doi.org/10.1134/S0036023618020079 (2018).

    Article  Google Scholar 

  39. S.Z. Imamaliyeva, V.A. Gasymov, and M.B. Babanly, Chemist 1, 1. (2017).

    Google Scholar 

  40. S.Z. Imamalieva, T.M. Gasanly, M.B. Babanly, and V.P. Zlomanov, Inorg. Mater 53(4), 361. https://doi.org/10.1134/S0020168517040069 (2017).

    Article  Google Scholar 

  41. S.Z. Imamalieva, D.M. Babanly, T.M. Gasanly, D.B. Tagiev, and M.B. Babanly, Russ. J. Phys. Chem. A 92(11), 2111. https://doi.org/10.1134/S0036024418110158 (2018).

    Article  Google Scholar 

  42. S.Z. Imamaliyeva, I.F. Mekhdiyeva, D.B. Babanlı, V.P. Zlomanov, D.B. Tagiev, and M.B. Babanly, Russ. J. Inorg Chem. 65, 1550. https://doi.org/10.1134/S0036023620110066 (2020).

    Article  Google Scholar 

  43. A.G. Morachevsky, G.F. Voronin, V.A. Geyderich, and I.B. Kutsenok, Electrochemical research methods in the thermodynamics of metallic systems (Akademkniga, Moscow, 2003)

    Google Scholar 

  44. V.P. Vassiliev, V.A. Lysenko, and M. Gaune-Escard, Pure Appl. Chem 91, 879. https://doi.org/10.1515/pac-2018-0717 (2019).

    Article  Google Scholar 

  45. V.P. Vassiliev, V. Lysenko, and J. Bros, J. Alloys Compd. 790, 370. https://doi.org/10.1016/J.JALLCOM.2019.03.016 (2019).

    Article  Google Scholar 

  46. V.P. Vassiliev, and V.A. Lysenko, Electrochim. Acta 222, 1770. https://doi.org/10.1016/j.electacta.2016.11.075 (2016).

    Article  Google Scholar 

  47. E.G. Osadchii, Y.I. Korepanov, and N.N. Zhdanov, Instrum. Exp. Tech. 59(2), 302. (2016).

    Article  Google Scholar 

  48. V Vassiliev, and W. Gong, New Advances in Fundamental Researches and Applications, ed. Y. Shao (Intech Open, 2012), p. 71. https://doi.org/10.5772/39007

  49. M.V. Voronin, and E.G. Osadchii, Russ. J. Electrochem 47(4), 420. https://doi.org/10.1134/S1023193511040203 (2011).

    Article  Google Scholar 

  50. S.Z. Imamaliyeva, D.M. Babanly, V.P. Zlomanov, D.B. Taghiyev, and M.B. Babanly, Condens. Matt. Interphases 22(4), 453. (2020).

    Google Scholar 

  51. Thermal constants of substances: Database. Version 2, 2006. http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html

  52. V.P. Vasilev, A.V. Nikolskaya, Y.I. Gerasimov, and A.F. Kuznetsov, Neorg. Mater. 4, 1040. (1968).

    Google Scholar 

Download references

Acknowledgements

The work has been carried out within the framework of the international joint research laboratory “Advanced Materials for Spintronics and Quantum Computing” (AMSQC) established between the Institute of Catalysis and Inorganic Chemistry of ANAS (Azerbaijan) and Donostia International Physics Center (Basque Country, Spain) and partially supported by the Science Development Foundation under the President of the Republic of Azerbaijan, a grant EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/01/4-M-33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Z. Imamaliyeva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamaliyeva, S.Z., Babanly, D.M., Qasymov, V.A. et al. Solid-phase Relationships in the Tl2Te-Tl2Te3-TlTbTe2 System and Thermodynamic Properties of Thallium–Terbium Tellurides. JOM 73, 1503–1510 (2021). https://doi.org/10.1007/s11837-021-04623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04623-z

Navigation