Skip to main content

Synthesis and Thermodynamic Investigation of Energy Materials in the Ag-Te-Cl System by the Solid-State Galvanic Cells

Abstract

Discoveries of new energy materials with unique properties and wider thermal stability ranges enable sustainable developments toward a low-carbon society. In this work, phase stabilities and thermodynamic properties of selected compounds in the Ag-Te-Cl system with potential application as energy materials have been critically reviewed and experimentally investigated. Based on the literature data on phase formations in the AgCl-Ag2Te-Te part of the Ag-Te-Cl system and the results of electromotive force (EMF) measurements in this work, formations of the Ag19Te6Cl7, Ag10Te4Cl3, Ag5Te2Cl, and Ag23Te12Cl compounds below 500 K were established. The EMF measurements were performed in carefully built galvanic cells with positive electrodes prepared from finely ground mixtures of pure substances Ag, Te, and AgCl. Based on the temperature dependences of the EMF of the cells, the standard thermodynamic quantities of the ternary compounds of the Ag-Te-Cl system were experimentally determined for the first time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Y. Shi, C. Sturm, and H. Kleinke, J. Solid State Chem. 270, 273 (2019).

    Article  Google Scholar 

  2. F. Tesfaye, and D. Lindberg, J. Mater. Sci. 51, 5750 (2016).

    Article  Google Scholar 

  3. A. Vogel, T. Miller, C. Hoch, M. Jakob, O. Oeckler, and T. Nilges, Inorg. Chem. 58, 6222 (2019).

    Article  Google Scholar 

  4. O. Osters, T. Nilges, and Z. Anorg, Allg. Chem. 636, 297 (2010).

    Article  Google Scholar 

  5. R. Blachnik, and H.A. Dreisbach, J. Solid State Chem. 60, 115 (1985).

    Article  Google Scholar 

  6. Th. Doert, E. Rönsch, F. Schnieders, P. Böttcher, J. Sieler, and Z. Anorg, Allg. Chem. 626, 89 (2000).

    Article  Google Scholar 

  7. S. Lange, M. Bawohl, and T. Nilges, Inorg. Chem. 47, 2625 (2008).

    Article  Google Scholar 

  8. T. Nilges, S. Nilges, A. Pfitzner, T. Doert, and P. Böttcher, Chem. Mater. 16, 806 (2004).

    Article  Google Scholar 

  9. R.C. Agrawal, and R.K. Gupta, J. Mater. Sci. 34, 1131 (1999).

    Article  Google Scholar 

  10. A.R. West, Solid State Chemistry and Its Applications (Wiley, New York, 2014)

    Google Scholar 

  11. T. Nilges, O. Osters, M. Bawohl, J.-L. Bobet, B. Chevalier, R. Decourt, and R. Weihrich, Chem. Mater. 22, 2946 (2010).

    Article  Google Scholar 

  12. N. Eckstein, T. Nilges, R. Decourt, J.-L. Bobet, and B. Chevalier, J. Solid State Chem. 184, 778 (2011).

    Article  Google Scholar 

  13. J.-S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).

    Article  Google Scholar 

  14. W. Liu, J. Hu, S. Zhang, M. Deng, C.-G. Han, and Y. Liu, Materials Today Physics 1, 50 (2017).

    Article  Google Scholar 

  15. M.X. Huo, Y. Li, Z. Song, and C.P. Sun, Europhys. Lett. 84, 30004 (2008).

    Article  Google Scholar 

  16. G.M.A. Almeida, F. Ciccarello, T.J.G. Apollaro, and A.M.C. Souza, Phys. Rev. A 93, 032310 (2016).

    Article  Google Scholar 

  17. T. Nilges, M. Julia, and Z. Anorg, Allg. Chem. 634, 2185 (2008).

    Article  Google Scholar 

  18. E. Robinel, B. Carette, M. Ribes, and J. Non-Cryst, Solids 57, 49 (1983).

    Google Scholar 

  19. M.V. Moroz, PYu. Demchenko, O.G. Mykolaychuk, L.G. Akselrud, and R.E. Gladyshevskii, Inorg. Mater. 49, 867 (2013).

    Article  Google Scholar 

  20. M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, D. Lindberg, O. Reshetnyak, and L. Hupa, J. Chem. Thermodyn. 118, 255 (2018).

    Article  Google Scholar 

  21. M.V. Moroz, M.V. Prokhorenko, PYu. Demchenko, and O.V. Reshetnyak, J. Chem. Thermodyn. 106, 228 (2017).

    Article  Google Scholar 

  22. M.V. Moroz, M.V. Prokhorenko, O.V. Reshetnyak, and PYu. Demchenko, J. Solid State Electrochem. 21, 833 (2017).

    Article  Google Scholar 

  23. M.V. Moroz, PYu. Demchenko, M.V. Prokhorenko, and O.V. Reshetnyak, J. Phase Equilib. Diffus. 38, 426 (2017).

    Article  Google Scholar 

  24. M. Aspiala, F. Tesfaye, and P. Taskinen, Electrochim. Acta 173, 649 (2015).

    Article  Google Scholar 

  25. M.V. Moroz, and M.V. Prokhorenko, Russ. J. Phys. Chem. A. 88, 742 (2014).

    Article  Google Scholar 

  26. M.V. Moroz, M.V. Prokhorenko, and B.P. Rudyk, Russ. J. Electrochem. 50, 1177 (2014).

    Article  Google Scholar 

  27. M.V. Moroz, M.V. Prokhorenko, and S.V. Prokhorenko, Russ. J. Electrochem. 51, 886 (2015).

    Article  Google Scholar 

  28. M.V. Moroz, and M.V. Prokhorenko, Russ. J. Phys. Chem. A. 89, 1325 (2015).

    Article  Google Scholar 

  29. M. Kh. Karapetyants, The Chemical thermodynamics (Goskhimizdat, Moscow, 1953) ([in Russian]).

    Google Scholar 

  30. A.J. Gordon, and R.A. Ford, The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References (Wiley, New York, 1972)

    Google Scholar 

  31. A.G. Morachevsky, G.F. Voronin, V.A. Geiderich, and I.B. Kutsenok, Electrochemical Methods of Research in the Thermodynamics of Metal Systems (Academic Book, Cambridge, 2003)

    Google Scholar 

  32. M. Babanly, Y. Yusibov, and N. Babanly, in Electromotive Force and Measurement in Several Systems, edited by S. Kara (InTech, 2011), pp. 57–78.

  33. F.J. Gravetter, and L.B. Wallnau, Statistics for the Behavioral Sciences, 10th edn. (Cengage Learning, Australia, 2017)

    Google Scholar 

  34. N.B. Babanly, E.N. Orujlu, S.Z. Imamaliyeva, Y.A. Yusibov, and M.B. Babanly, J. Chem. Thermodyn. 128, 78 (2019).

    Article  Google Scholar 

  35. S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Taghiyev, and M.B. Babanly, Thermochim. Acta 679, 178319 (2019).

    Article  Google Scholar 

  36. M.V. Voronin, and E.G. Osadchii, Econ. Geol. 108, 1203 (2013).

    Article  Google Scholar 

  37. M.V. Voronin, E.G. Osadchii, and E.A. Brichkina, Phys. Chem. Miner. 44, 639 (2017).

    Article  Google Scholar 

  38. R.A. Robie and B.S. Hemingway, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geological Survey Bulletin, Washington, 1995).

Download references

Acknowledgements

This research was supported by the national projects of the Ministry of Education and Science of Ukraine: “Synthesis, physico-chemical and thermodynamic properties of nanosized and nanostructured materials for electrochemical systems” (No. 0120U102184). This work was partly supported by the Academy of Finland project (Decision Number 311537) as part of the activities of the Johan Gadolin Process Chemistry Centre at Åbo Akademi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Moroz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moroz, M., Tesfaye, F., Demchenko, P. et al. Synthesis and Thermodynamic Investigation of Energy Materials in the Ag-Te-Cl System by the Solid-State Galvanic Cells. JOM 73, 1487–1494 (2021). https://doi.org/10.1007/s11837-021-04619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04619-9