Skip to main content
Log in

Improving Room-Temperature Stretch Formability of Mg-4.9Al-0.16Mn (mass%) Alloy Sheet via Optimizing Rolling Temperature

  • Developments in the Production of Magnesium Alloy Flat Products
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of the rolling temperature on the room-temperature stretch formability, tensile properties, microstructure, and texture of Mg-4.9Al-0.16Mn (mass%) alloy sheet has been investigated. Rolling at 220°C resulted in the formation of a weakly aligned isotropic texture feature, and the annealed sheet showed splitting of (0001) poles to the rolling direction and broadening of (0001) poles to the transverse direction, leading to an excellent Index Erichsen value of 8.2 mm. The alloy sheet also formed a fine-grained structure with average grain size of ~9 µm, achieving isotropic tensile properties with a moderate 0.2% proof stress of ~ 150 MPa. Quasi-in situ electron backscattered diffraction was employed to study the evolution of the texture, revealing that the suppression of dynamic recrystallization, shear-band-related static recrystallization, and grain growth behavior within the shear bands had a significant impact on the texture weakening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Beer, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, ed. C. Bettles and M. Barnett (Woodhead, UK, 2012), p. 304

  2. W.J. Joost, and P.E. Krajewski, Scr. Mater. 128, 107. (2017).

    Article  Google Scholar 

  3. Y. Chino, H. Iwasaki, and M. Mabuchi, Mater. Sci. Eng. A 466, 90. (2007).

    Article  Google Scholar 

  4. L. Wang, M. Cao, W. Cheng, H. Zhang, X. Cao, and E. Mostaed, JOM 70, 2321. (2018).

    Article  Google Scholar 

  5. X. Huang, K. Suzuki, and N. Saito, Mater. Sci. Eng. A 508, 226. (2009).

    Article  Google Scholar 

  6. D. Wu, R.S. Chen, and E.H. Han, J. Alloys Compd. 509, 2856. (2011).

    Article  Google Scholar 

  7. Q. Wang, B. Jiang, A. Tang, C. He, D. Zhang, J. Song, T. Yang, G. Huang, and F. Pan, Mater. Sci. Eng. A 746, 259. (2019).

    Article  Google Scholar 

  8. Y. Chino, T. Ueda, Y. Otomatsu, K. Sasaa, X. Huang, K. Suzuki, and M. Mabuchi, Mater. Trans. 52, 1477. (2011).

    Article  Google Scholar 

  9. T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, and S. Kamado, Acta Mater. 130, 261. (2017).

    Article  Google Scholar 

  10. T. Nakata, C. Xu, R. Ajima, Y. Matsumoto, K. Shimizu, T.T. Sasaki, K. Hono, and S. Kamado, Mater. Sci. Eng. A 712, 12. (2018).

    Article  Google Scholar 

  11. M.Z. Bian, T.T. Sasaki, B.C. Suh, T. Nakata, S. Kamado, and K. Hono, Scr. Mater. 138, 151. (2017).

    Article  Google Scholar 

  12. Y. Choi, K. Kuroda, and M. Okido, Corros. Sci. 103, 181. (2016).

    Article  Google Scholar 

  13. A. Bahmani, S. Arthanari, K.S. Shin, and J. Magnes, Alloys 7, 38. (2019).

    Article  Google Scholar 

  14. M. Erinc, W.H. Sillekens, R.G.T.M. Mannens, and R.J. Werkhoven, Magnesium Technology 2009, ed. E.A. Nyberg, S.R. Agnew, N.R. Neelameggham, M.O. Pekguleryuz, (Pennsylvania, PA: TMS, 2009), p. 209

  15. P. Bakke, K. Pettersen, and H. Westengen, JOM 55, 46. (2003).

    Article  Google Scholar 

  16. A.A. Luo, Magnesium: current and potential automotive applications. JOM 54, 42. (2002).

    Article  Google Scholar 

  17. F. Guo, D. Zhang, H. Wu, L. Jiang, and F. Pan, J. Alloys Compd. 695, 396. (2017).

    Article  Google Scholar 

  18. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, J. Alloys Compd. 509, 7579. (2011).

    Article  Google Scholar 

  19. T. Nakata, C. Xu, H. Ohashi, Y. Yoshida, K. Yoshida, and S. Kamado, Magnesium Technology 2021, ed. V. Miller, P. Maier, J.B. Jordon, N. Neelameggham (Pennsylvania, PA: TMS, 2021), Accepted

  20. P. Villars, Pearson’s Handbook Desk Edition Crystallographic Data for Intermetallic Phases Volume 1 (Ohio, OH: ASM International, 1997), pp. 420–424

  21. H. Ding, K. Hirai, and S. Kamado, Mater. Sci. Eng. A 527, 3379. (2010).

    Article  Google Scholar 

  22. X.-Y. Xu, Y.-F. Wang, H.-Y. Wang, T. Wang, M. Zha, Z.-M. Hua, C. Wang, and Q.-C. Jiang, J. Alloys Compd. 787, 1104. (2019).

    Article  Google Scholar 

  23. E.F. Emley, Principles of Magnesium Technology (Pergamon, Oxford, 1966), pp 925–965

    Google Scholar 

  24. J.A. del Valle, and O.A. Ruano, Mater. Lett. 63, 1551. (2009).

    Article  Google Scholar 

  25. A.K. Ghosh, J. Eng. Mater. Technol. ASME 99, 3829. (1977).

    Article  Google Scholar 

  26. J.J. Bhattacharyya, Scr. Mater. 163, 121. (2019).

    Article  Google Scholar 

  27. T. Nakata, C. Xu, H. Ohashi, Y. Yoshida, K. Yoshida, and S. Kamado, Scr. Mater. 180, 16. (2020).

    Article  Google Scholar 

  28. M. Liu, P.J. Uggowitzer, P. Schmutz, and A. Atrens, JOM 60, 39. (2008).

    Article  Google Scholar 

  29. L. Yang, X. Zhou, S.M. Liang, R.S. Fetzer, Z. Fan, G. Scamans, J. Robson, and G. Thompson, J. Alloys Compd. 619, 396. (2015).

    Article  Google Scholar 

  30. P. Villars, Pearson’s Handbook Desk Edition Crystallographic Data for Intermetallic Phases, vol 2. (ASM International, Ohio, 1997), p 2347

    Google Scholar 

  31. F.J. Humphreys, and M. Hatherly, Recystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, UK, 2004), pp 215–220

    Book  Google Scholar 

  32. A.G. Beer, and M.R. Barnett, Mater. Sci. Eng. A 485, 318. (2008).

    Article  Google Scholar 

  33. S.J. Park, H.C. Jung, and K.S. Shin, Mater. Sci. Eng. A 679, 329. (2017).

    Article  Google Scholar 

  34. B.-C. Suh, M.-S. Shim, K.S. Shin, and N.J. Kim, Scr. Mater. 84–85, 1. (2014).

    Article  Google Scholar 

  35. B.-C. Suh, J.H. Kim, J.H. Bae, J.H. Hwang, M.-S. Shim, and N.J. Kim, Acta Mater. 124, 268. (2017).

    Article  Google Scholar 

  36. E. Hall, Proc. Phys. Soc. Ser. B 64, 747. (1951).

    Article  Google Scholar 

  37. N.J. Petch, J. Iron Steel Inst. 174, 2528. (1953).

    Google Scholar 

  38. J. Koike, and R. Ohyama, Acta Mater. 53, 1963. (2005).

    Article  Google Scholar 

  39. C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Gao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, and H.L. Xie, Metall. Mater. Trans. A 49, 1931. (2018).

    Article  Google Scholar 

  40. T. Nakata, C. Xu, Y. Uehara, T.T. Sasaki, and S. Kamado, J. Alloys Compd. 782, 304. (2019).

    Article  Google Scholar 

  41. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, J. Mater. Sci. 47, 4561. (2012).

    Article  Google Scholar 

  42. J. Su, A.S.H. Kabir, M. Sanjari, and S. Yue, Mater. Sci. Eng. A 674, 343. (2016).

    Article  Google Scholar 

  43. A. Galiyev, R. Kaibyshev, and G. Gottstein, Acta Mater. 49, 1199. (2001).

    Article  Google Scholar 

  44. R. Kaibyshev, Advances in Wrought Magnesium Alloys, ed. C. Bettles and M. Barnett (Woodhead, UK, 2012), p. 189

  45. L.W.F. Mackenzie, and M.O. Pekguleryuz, Scr. Mater. 59, 665. (2008).

    Article  Google Scholar 

  46. I. Basu, T. Al-Samman, and G. Gottstein, Mater. Sci. Eng. A 579, 50. (2013).

    Article  Google Scholar 

  47. X. Zeng, P. Minárik, P. Dobroň, D. Letzig, K.U. Kainer, and S. Yi, Scr. Mater. 166, 53. (2019).

    Article  Google Scholar 

  48. I. Basu, and T. Al-Samman, Acta Mater. 67, 116. (2014).

    Article  Google Scholar 

  49. M. Sanjari, S.F. Farzadfar, T. Sakai, H. Utsunomiya, E. Essadiqi, I.-H. Jung, and S. Yue, Mater. Sci. Eng. A 561, 191. (2013).

    Article  Google Scholar 

  50. D. Guan, W.M. Rainforth, J. Gao, L. Ma, and B. Wynne, Acta Mater. 145, 399. (2018).

    Article  Google Scholar 

  51. T. Nakata, C. Xu, Y. Yoshida, and S. Kamado, Mater. Sci. Eng. A 801, 140399. (2021).

    Article  Google Scholar 

  52. A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew, Mater. Sci. Eng. A 486, 545. (2008).

    Article  Google Scholar 

  53. F. Zarandi, G. Seale, R. Verma, E. Essadiqi, and S. Yue, Mater. Sci. Eng.: A 496, 159. (2008).

    Article  Google Scholar 

  54. N. Stanford, and D. Atwell, Metall. Mater. Trans. A 44, 4830. (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Nos. JP19K15321, JP18H03837, THE AMADA FOUNDATION (AF-2019037-C2), Advanced Low Carbon Technology Research and Development Program (ALCA), 12102886, National Natural Science Foundation, Grant No. 51971075, and Nagaoka University of Technology (NUT) Presidential Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiki Nakata.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakata, T., Xu, C., Fujii, T. et al. Improving Room-Temperature Stretch Formability of Mg-4.9Al-0.16Mn (mass%) Alloy Sheet via Optimizing Rolling Temperature. JOM 73, 1440–1449 (2021). https://doi.org/10.1007/s11837-021-04610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04610-4

Navigation