Skip to main content
Log in

Mechanism of Formation of Chabazite-K by Fusion of Fly Ash with KOH Followed by Hydrothermal Reaction and Its Cs+ Sorption Properties

  • Materials Recovery Considerations for Design of Next-generation Functional Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Chabazite-K was synthesized from coal fly ash by a two-stage hydrothermal process. Fly ash was fused with KOH and colloidal SiO2, and the resulting material was characterized by x-ray diffraction (XRD) analysis and Raman spectroscopy. The role of KOH in the nucleation of chabazite is explained in terms of uniform incorporation of Al and Si tetrahedra in aluminosilicate rings at the fusion stage. Cocrystallization of phillipsite with chabazite led to the formation of phillipsite–chabazite combined phase along with chabazite-K. The Cs+ sorption capacity of the material was found to be 299 ± 8 mg/g with selectivity for Cs+. Under the same experimental conditions, fusion of fly ash in NaOH led to formation of sodalite, which can be explained in terms of preferential incorporation of Al tetrahedra in aluminosilicate rings at the fusion stage of synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Baerlocher, and L.B. McCusker and D.H. Olson, Atlas of Zeolite Framework Types, 6th edn. (Elsevier, The Netherlands, The Netherland Linacre House, Amsterdam, 2007). pp. 96–97

  2. O.V. Yakubovich, W. Massa, P.G. Gavrilenko, and I.V. Pekov, O.V. Yakubovich, W. Massa, P.G. Gavrilenko, and I.V. Pekov, Crystall. Rep. 50, 544. (2005).

    Google Scholar 

  3. L.L. Ames Jr., and L.L. Ames Jr., Am. Min. 46, 1120. (1961).

    Google Scholar 

  4. Q. Huang, Z. Li-Xia, P. Lan, C. Yang, J. Zhi-Yu, Y. Xu, and J. Xu, Q. Huang, Z. Li-Xia, P. Lan, C. Yang, J. Zhi-Yu, Y. Xu, and J. Xu, J. Radioanal. Nucl. Chem. 323, 65. (2020).

    Google Scholar 

  5. D. Alby, C. Charnay, M. Heran, B. Prelot, and J. Zajac, D. Alby, C. Charnay, M. Heran, B. Prelot, and J. Zajac, J. Hazard. Mater. 344, 511. (2018).

    Google Scholar 

  6. P.K. Kolay, and D.N. Singh, P.K. Kolay, and D.N. Singh, Cem. Concr. Res. 31, 539. (2001).

    Google Scholar 

  7. E.V. Sokol, N.V. Maksimova, N.I. Volkova, E.N. Nigmatulina, and A.E. Frenkel, E.V. Sokol, N.V. Maksimova, N.I. Volkova, E.N. Nigmatulina, and A.E. Frenkel, Fuel Process. Technol. 67, 35. (2000).

    Google Scholar 

  8. X. Querol, F. Plana, A. Alastuey, and A. Lopez-Soler, X. Querol, F. Plana, A. Alastuey, and A. Lopez-Soler, Fuel 76, 793. (1997).

    Google Scholar 

  9. X. Querol, J.C. Umaña, F. Plana, A. Alastuey, A. Lopez-Soler, A. Medinaceli, A. Valero, M.J. Domingo, and E. Garcia-Rojo, X. Querol, J.C. Umaña, F. Plana, A. Alastuey, A. Lopez-Soler, A. Medinaceli, A. Valero, M.J. Domingo, and E. Garcia-Rojo, Fuel 80, 857. (2001).

    Google Scholar 

  10. N.M. Musyoka, L.F. Petrik, and E. Hums, Proceedings 11th International Mine Water Association Congress—Mine Water —Managing the Challenges (Aachen, Germany, 2011), pp 423–427

    Google Scholar 

  11. T. Fukasawa, A. Horigome, T. Tsu, A.D. Karisma, N. Maeda, A.-N. Huang, and K. Fukui, T. Fukasawa, A. Horigome, T. Tsu, A.D. Karisma, N. Maeda, A.-N. Huang, and K. Fukui, Fuel Process. Technol. 167, 92. (2017).

    Google Scholar 

  12. P. Kuneckia, R. Panek, A. Koteja, and W. Franus, P. Kuneckia, R. Panek, A. Koteja, and W. Franus, Microporous Mesoporous Mater. 266, 102. (2018).

    Google Scholar 

  13. T.A. Vereshchagina, E.A. Kutikhina, L.A. Solovyov, S.N. Vereshchagin, E.V. Mazurova, Y.Y. Chernykh, and A.G. Anshits, T.A. Vereshchagina, E.A. Kutikhina, L.A. Solovyov, S.N. Vereshchagin, E.V. Mazurova, Y.Y. Chernykh, and A.G. Anshits, Microporous Mesoporous Mater. 258, 228. (2018).

    Google Scholar 

  14. M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, and J. Hojo, M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, and J. Hojo, Fuel 84, 1482. (2005).

    Google Scholar 

  15. F. Noli, G. Buema, P. Misaelides, and M. Harja, F. Noli, G. Buema, P. Misaelides, and M. Harja, J. Radioanal. Nucl. Chem. 333, 2303. (2015).

    Google Scholar 

  16. C.A. Rios, C.D. Williams, and C.L. Roberts, C.A. Rios, C.D. Williams, and C.L. Roberts, Fuel 88, 1403. (2009).

    Google Scholar 

  17. T. Du, X. Fang, Y. Wei, J. Shang, B. Zhang, and L. Liu, T. Du, X. Fang, Y. Wei, J. Shang, B. Zhang, and L. Liu, Energy Fuels 31, 4301. (2017).

    Google Scholar 

  18. K. Ojha, N.C. Pradhan, and A.N. Samanta, K. Ojha, N.C. Pradhan, and A.N. Samanta, Bull. Mater. Sci. 27, 555. (2004).

    Google Scholar 

  19. M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, Microporous Mesoporous Mater. 37, 81. (2000).

    Google Scholar 

  20. Z. Bian, Y. Feng, H. Liu, and J. Zhan, Z. Bian, Y. Feng, H. Liu, and J. Zhan, Environ. Res. 190, 109984. (2020).

    Google Scholar 

  21. C.A. Ríos, C.D. Williams, and M.A. Fullen, C.A. Ríos, C.D. Williams, and M.A. Fullen, Appl. Clay. Sci. 42, 446. (2009).

    Google Scholar 

  22. C. Dwivedi, S.K. Pathak, M. Kumar, S.C. Tripathi, and P.N. Bajaj, C. Dwivedi, S.K. Pathak, M. Kumar, S.C. Tripathi, and P.N. Bajaj, Environ. Sci. Water Res. Technol. 1, 153. (2015).

    Google Scholar 

  23. C. Sun, L. Sun, and X. Sun, C. Sun, L. Sun, and X. Sun, Ind. Eng. Chem. Res. 52, 14251. (2013).

    Google Scholar 

  24. W. Baek, S. Ha, S. Hong, S. Kim, and Y. Kim, W. Baek, S. Ha, S. Hong, S. Kim, and Y. Kim, Microporous Mesoporous Mater. 264, 159. (2018).

    Google Scholar 

  25. S. Muljani, B.W. Wahyudi, K. Sumada, and S. Suprihatin, S. Muljani, B.W. Wahyudi, K. Sumada, and S. Suprihatin, MATEC Web of Conf. https://doi.org/10.1051/matecconf/20165801021 (2016).

    Article  Google Scholar 

  26. Y. Yao, E. Hamada, K. Sato, T. Akiyama, and T. Yoneyama, Y. Yao, E. Hamada, K. Sato, T. Akiyama, and T. Yoneyama, ISIJ Int. 54, 990. (2014).

    Google Scholar 

  27. C. L. Knight, M. A. Williamson and R. J Bodnar, Microbeam Analysis-1989, ed. P E Russell, (San Francisco Press Inc., San Francisco, USA, 1989) p. 371

  28. A.F. Gualtieri, D. Caputo, and C. Colella, A.F. Gualtieri, D. Caputo, and C. Colella, Microporous Mesoporous Mater. 32, 319. (1999).

    Google Scholar 

  29. H. Mimura, K. Yokota, K. Akiba, and Y. Onodera, H. Mimura, K. Yokota, K. Akiba, and Y. Onodera, J. Nucl. Sci. Technol. 38, 766. (2001).

    Google Scholar 

  30. X. Querol, A. Alastuey, J. Fernández-Turiel, and A. López-Soler, X. Querol, A. Alastuey, J. Fernández-Turiel, and A. López-Soler, Fuel 74, 1226. (1995).

    Google Scholar 

  31. J. Luo, H. Zhang, and J. Yang, J. Luo, H. Zhang, and J. Yang, Proc. Environ. Sci. 31, 605. (2016).

    Google Scholar 

  32. A. Guedes, B. Valentim, A.C. Prieto, A. Sanz, D. Flores, and F. Noronha, A. Guedes, B. Valentim, A.C. Prieto, A. Sanz, D. Flores, and F. Noronha, Int. J. Coal Geol. 73, 359. (2008).

    Google Scholar 

  33. D. Vuono, L. Pasqua, F. Testa, R. Aiello, A. Fonseca, T.I. Korányi, and J.B. Nagy, D. Vuono, L. Pasqua, F. Testa, R. Aiello, A. Fonseca, T.I. Korányi, and J.B. Nagy, Microporous Mesoporous Mater. 97, 78. (2006).

    Google Scholar 

  34. S. Wang, L. Li, and Z.H. Zhu, S. Wang, L. Li, and Z.H. Zhu, J. Hazard. Mater. B 139, 254. (2007).

    Google Scholar 

  35. P.K. Dutta, D.C. Shieh, and M. Puri, P.K. Dutta, D.C. Shieh, and M. Puri, J. Phys. Chem. 91, 2332. (1987).

    Google Scholar 

  36. P.K. Dutta, D.C. Shieh, and M. Puri, P.K. Dutta, D.C. Shieh, and M. Puri, Zeolites 8, 306. (1988).

    Google Scholar 

  37. C.L. Angell, C.L. Angell, J. Phys. Chem. 77, 222. (1973).

    Google Scholar 

  38. A. Mikuła, M. Król, and A. Kolezynski, A. Mikuła, M. Król, and A. Kolezynski, Spectrochim. Acta A 144, 273. (2015).

    Google Scholar 

  39. C. Günther, H. Richter, I. Voigt, A. Michaelis, H. Tzscheutschler, R. Krause-Rehberg, and J.M. Serra, C. Günther, H. Richter, I. Voigt, A. Michaelis, H. Tzscheutschler, R. Krause-Rehberg, and J.M. Serra, Microporous Mesoporous Mater. 214, 1. (2015).

    Google Scholar 

  40. G. Engelhard, J. Felsche, and P. Sieger, G. Engelhard, J. Felsche, and P. Sieger, J. Am. Chem. Soc. 114, 1173. (1992).

    Google Scholar 

  41. L. Leardini, S. Quartieri, and G. Vezzalini, L. Leardini, S. Quartieri, and G. Vezzalini, Microporous Mesoporous Mater. 127, 219. (2010).

    Google Scholar 

  42. M. Kawano, and K. Tomita, M. Kawano, and K. Tomita, Clay. Clay. Min. 45, 365. (1997).

    Google Scholar 

  43. P. Cappelletti, G. Rapisardo, B.D. Gennaro, A. Colella, A. Langella, S.F. Graziano, D.L. Bish, and M.D. Gennaro, P. Cappelletti, G. Rapisardo, B.D. Gennaro, A. Colella, A. Langella, S.F. Graziano, D.L. Bish, and M.D. Gennaro, J. Nucl. Mater. 414, 451. (2011).

    Google Scholar 

  44. M. Adabbo, D. Caputo, B.D. Gennaro, M. Pansini, and C. Colella, M. Adabbo, D. Caputo, B.D. Gennaro, M. Pansini, and C. Colella, Microporous Mesoporous Mater. 28, 315. (1999).

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank SAIF, IITM, Chennai for providing SEM-EDX data and WIP, BARC facilities for providing experimental facilities for measurements using scintillation counter. They are also thankful to Dr. A. Sree Rama Murthy and Santanu Parida for acquiring XRD patterns and Raman spectra respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Bera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavendra, Y., Bera, S., Srinivasan, M.P. et al. Mechanism of Formation of Chabazite-K by Fusion of Fly Ash with KOH Followed by Hydrothermal Reaction and Its Cs+ Sorption Properties. JOM 73, 2111–2121 (2021). https://doi.org/10.1007/s11837-021-04594-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04594-1

Navigation